196 463 DESWN RND IHPLEIENTRTION OF VLSI PRI!‘ FM‘I’N ' 1/3)
mmﬂ PROCESSOR(U
GHT-PATTERSON AFB O OOL OF ENGINEERING

4.5

DO

vl *al

O a8’

S-a 00 0'a0'a8's ‘el N/

A LA S ONS]

ALesS

v

<’

R0
s e s & a

Il
Mlll

w

MAIVY Y S R e,

1

N2.5
W=
2.2
=
2.0
=

= = =t
5=
?.E? < o

L 4-
S = o am =

=
=
[
| .
b
o

<

Z
Col

'.
———— LT
e — -

lol
——

18

16

1
F———1
———
—

|

7

—_—
—_—
—_—

I

1.25

il

-~

by’ ¥

Y2 A 0Ny WL LM

(
K

(-------- LA LA N AV EL 4"% 2 L a°0 AR V8 o984 o84 e . Vp o0: 7.
((f,)
45
0
< o
8 o
D o
4
<’I %
0 W
< o
’.
-
™ 3
DESIGN AND IMPLEMENTATION
OF A VLSI
PRIME FACTOR ALGORITHM PROCESSOR
THESIS
Robert S. Hauser
Second Lieutenant, USAF
AFIT/GCE/ENG/87D-5
FAELECTE
2\ MAR 2 8 1088
' vy
| - DEPARTMENT OF THE AIR FORCE E
[AIR UNIVERSITY e s
f AIR FORCE INSTITUTE OF TECHNOLOGY
‘ k . “ - - — "~]
Wright-Patterson Air Force Base, Ohio
g e gs 3 24 099
fos pakic release adodn i . .
Agntdehios I w
Ol A N e AT AP N ~ ~ S

e wooe Tt A a4, R e . .\
T L A it (At el e A ot

OO TR T T OV T Y P W W O U UY U T N T Y T Y W O O T O T O O O T P WO W P WY P I W P PR O T IO Spdataal g\ gi gt

AFIT/GCE/ENG /87D-5 i
33

.
o Vs,

a

KA
AN A

....-,. e s
- - ._ .
XA

»I:-. s S TR

)

o0
DESIGN AND IMPLEMENTATION
OF A VLSI :
PRIME FACTOR ALGORITHM PROCESSOR R
THESIS .
Robert S. Hauser s
Second Lieutenant, USAF o
AFIT/GCE/ENG/87D-5 e
L | f4 3
. &"' - :_""*. 0
CAELECTE N
; o . ::.f\'
(o H o 8 :’:"X‘ Pf" ; ..:;s_

v
d

4
fad

L |
r
e,
oy

Approved for public release; distribution unlimited

* l- ". ts. I‘.‘

)

a
L
‘:;. 'y
-, -
SRR
v * & Py

.'_J.
i

.
v L

G %%
.:.LIA-,‘

o

L e e P S T A W L L - X - - Tt AT AT

‘...... TRITRTUE XX) ‘ol ol ¥ agh 0.0 b pd g 4.0 4, 8% U .84 2'2. 8% o' a?h b O WV Y UV W W OW I T VOO . U "‘
) 3"]
v:. b
'.‘l D
]
i
P

AFIT/GCE/ENG/87D-5

DESIGN AND IMPLEMENTATION
OF A]
VLSI PRIME FACTOR ALGORITHM PROCESSOR

THESIS Q.

Presented to the Faculty of the School of Engineering
of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

ry e tat e

Requirements for the Degree of

A A

Master of Science in Computer Engineering e -

PR XS

Robert S. Hauser, B.S.

e

Second Lieutenant, USAF EURICIN

December 1987

Approved for public release; distribution unlimited.

“ave als’

oo

N ﬁ‘
e ;3

-".'I‘J'I;J'.;l.'.ﬂ"’-'..'"-..‘l_.-'_.f.‘ .-\.'.~,:._ ..,

Tag ey ag ‘al st 9,40, at, Y, Al "al el al Van dad tal a0 "ata"al tal tal ®al tat Vat tak a0 a8 tag Yad Vol A.0a0 a0 “af_ 2 'al tal *af)

Acknowledgements

I would like to thank my thesis advisor, Captain Richard W. Linderman, for his
continued support and dedication. Without his help, this thesis would not have been pos-
sible. I would also like to thank Major Joe DeGroat and Captain Nathaniel Davis for

reading this thesis and providing their input.

Special thanks to Juanita M. Blackford for her endless work in keeping the com-
puter systems up and functioning and preventing me from becoming a hermit. And a late

night thank you to everybody that worked in the VLSI trailer.

Finally, thanks to Mom and Dad for continually providing constant support and

encouragement, always.

RSO RN AR W, ‘\' _-.\- NN PR

RPN N N M A TN A

';ﬂﬁ.‘

Bsss

Pall ot o8 g% g8 4

n
a

vy ey

LI Y 4

LR

PN]

o

"‘- e

}

Xy

NN
»

.
-

PR -
1@ |90 5

Sl
L Y
‘.1:.1"..’- b

2

;e

LA A

iﬁ}&

3;.;‘

s te

Sl

A,

.
.

. L A
. .‘-‘:".
R

5.l“.:“ .‘.V p. '

.

"-.'-;;{ e

e

l', I: l'
7’

o

.é-’

J

»

L

545

Py -

Kad A A

A

P

S B

h

K

.
s Yo

a *

- %

nJ

L RIS

!

TV X

ey
(WS

TABLE OF CONTENTS

AcknOWIedZEMENtsoocooiiiiiiiiiii e

List of Figures

LSt Of T ables oo e e
A DS At oot oot

Chapter 1: Introduction

1.1 Background

1.2 Problem Statement

1.3 Scope

1.4 Approach

1.5 Summary of Current Knowledge
1.5.1 Digital Signal Processing.ccccooiiiiiiiiiiiiiiii e
1.5.2 Memory TechBIQUes.cccciiimiiiiiiiie e
1.5.3 Error Control Coding.ccoooeviiiiii et

1.6 Materials and Equipment

1.7 Sequence of Presentation

Chapter 2: Detailed Analysis of the Problem

2.1 OVEIVICW oo e e e
2.2 MeIMIOTY oot e e e e
2.2 1 IDLEr RCES. oot o
222 Data Flow. oo
223 Memory Cell. ..o
2.2.4 Reading and WIItING. ...
2.2.5 Address Selection. ...

i

. on - . e e ety e e e e e o S T N SN R T S I P o
A A T A Nt e AT AP PR - N AT T AT

AR AN M AL

o OOy

11

11
12
12
13
13
13

-
oo

v
4 4
PO

’

(NN
e

4

f.‘f 'y

P .
DY g
A L

AAA

o
S

- "- "- " 1

s

L
54,'_.. .
LR Y]

g

AP
S

3

". LY '11.'. "-'. A‘..
A '/?/ 7

P]

LY

5

LIPS
' e

v

[Py, A . Ol ¢ o8 bad a0 b,
:c
.
: '\.:\:,
R N
- TABLE OF CONTENTS (continued)
v, 2.2.6 Error Control Coding.cooimiiieiiicee e e 14
R
2.3 PFA Controller .ot et e e e s et e sttt 14
2.3.1 Control State SeqUEeNCING.oooovriieiiiiiiii e v e eee e e e er e e e e 14
2.3.2 Storing and Manipulating Data. ... 15
2.3.3 COMMUNICALION. ...ooiiiiiitie ittt ettt ee e ee et e e e etae e e e e e aaeae e e e e e e aaeaenes 16
. Chapter 3: Architecture and Algorithms
7
y 3.1 OVEIVIBW Lottt e et et e e e ettt e e e e e et et e e e e e eaaa e aeae ettt an e e e et 18
o
L4
B2 MEmMOTY oo e 18
3.2.1 Data FIOW. (oo 18
322 SHOTARE. ..o e 19
3.2.3 Error Control Coding.coooiiiiiiiie e 19
e 3231 Encoding ..o 20
Qe 3.2.3.2 DECOTINE - vveveerereoer e e oo 22
. 33 PFA Controller ... 24
N\ 3.3.1 Host Algorithm. ... 25
" 3.3.2 PFA Controller Algorithm. ... 27
o 3.3.3 Microprogrammed Control Unit. ... 28
. 3.3.4 Processor Unit. ... 31
’ 3.3.5 RegIStErS. oo e e 31
v
v 3.3.6 Microcode Word Format. ... 34
4 3.3.7 Pipeline Fault Tolerance. 34
-
N Chapter 4: Computer Aided Design Environment Tools
x 4.1 OVETVIBW oottt e e 38
7
; 4.2 Design Methodologyocoiiiiiii i 38
’ 4.2.1 AFIT CAD TOOIS. ...\ oo oot 39
: 4.2.2 Generic Microcode Assembler Tool (GMAT). ... 41
r. «'{:"\
g ‘:": v
A e __\'J\. e .r"__' PO A AR N T T o e T ' N - ~°

CL A
E Sk T §

=
'

L

-

P P T
- '.":'l'..: .

SOV Y v ;5

.
‘_ 2

Pl

P2 ELT

rX X2
PE AR &g A

TABLE OF CONTENTS (continued)

>

AR RSN

4.2.3 GMAT Assembler.
4.2.3.1 Translation File
4.24 PREG OPeration.occovviiiiiiiii i

o LA

.

Chapter 5: VLSI Design

AU O e 4
A &2

5.1 Design Techniques

5.2 Memory Chip

8§21 Memory Cell. ...,

5.2.2 Bitline Control.

5.2.3 Sense Amplifiers.

5.2.4 Word Selection.

5.2.5 One-Shot.

5.2.6 ECC.
5.26.1 Encoding. ..o
5.2.6.2 Decoding.ocoiiiiiiii e
5.2.6.3 ECCC and ECCU.

5.2.7 Switching Circuitry.

A YYXY)
L’ A0 N O P P

B % v O N

ey

X,
'-
d‘.
f;
'.n
,
"
LS

)

5.3 PFA Chip
5.3.1 Control Side.
5.3.2 XROM.
5.3.2.1 XROM Memory Cell.ccc.ooiiiiiiii e
5.3.3 XROM Sense Amplifier. ...
5.3.4 XROM Pipeline Register. ..o
5.3.5 Control Sequencer.
5.3.5.1 Address Selection.
5.3.5.2 Condition Select.
5.3.5.3 Incrementer.
5.3.6 Subroutine Stack.
5.3.6.1 Branch Selection.
$5.3.7 Data Side.
5.3.7.1 Register Cells. ... e
5.3.7.2 Registers.

NI
ROl

A

LI Ly
D

IR S

XA

Lo

“

I N N R A P Y R N NG 3 v T R A R A A

' tp OB ¥ *0eata ot o td At P S O T T T T T T I O T O T T T O R O R O P O WS ooy

J
|
I
]
. -
R
TABLE OF CONTENTS (continued)
b

5.3.7.3 Special Register Interfaces.cccoiiiiiiiiiiiiiii
5.3.7.4 Register SelectiOn.ccoiiiiiiiiiiiiie e
5.3.8 Data Path INSertion.ccoooiimiiiiiiii et
5.3.9 Arithmetic/Logic Unit.ooociiiiiiiiiii e
5.3.9.1 Integer Adder. . ..o
5.3.9.2 FUNCLIONS. ...oiiitiiiiiieiitieieit ittt et et ae e e e
5.3.10 Host Control Interface.coooioiiiiiiiiiiiii e
5.3.11 Periphiery. oo e e
5.3.11.1 State/Scale Bus.cccccoeiiiiiiii e
5.3.11.2 VOUtINg CITCUILIY. ..oviriieiiiiiiiieieiiie e et ettt e e e sb e e e ner e
5.3.11.3 WFT Processor Loads.ccccoooiiiiiiiiiiiiiiiiniiis e
5.3.11.4 Scale FAaCtOrs.ocooiiiiiiiiiiiieiee e
5.3, 11,5 ShZE. oo e

5.3.11.8 Toggle F/F . e
6,‘. 5.3.11.9 Column Done Storing.cccocovviiiiiiiiiiiiie e
5.3.12 Microcode Development.ccccooviiiiiiiiiiiiiiiiie e

E
|
\
]
!
¢
v
"
b
4
E
]
I
E
5.3.13 PFA Controller SUMMATY.cccooiiiiiiiiiiiiii e
Chapter 6: Results

6.1 ReSUILS ...ooiiiiiiiiiiiiee e e e
6.1.1 Memory Chips. ..o e
B.1.2 PEA Chip. o e
6.1.3 Generic Microcode Assembler Tool.

Chapter 7: Conclusions and Recommendations
T 1 COMCIUSIONS oo e

7.2 RecOMMENdAtIONS ooonoiie e

Bibliography

.SJ

..'.1
n‘. -'.

75
77
79
80
80
82
83
85
85
87
88
89
90
91
91
93
93
94
100

102
102
102
105

107

108

£l e

-

K545

AR R R AR 4
NN

AT b b

'(if'f

s
7

-y

l;ll" ‘l:-_j"k}.

L3

x‘“-‘.‘-‘r,',','_‘,. v
P -
AT 2= A

.

R

AL

:’.‘

oy Ay A 4 Y Nl TN
LR R AR ERARANIN

AT e

Vol Yaltabatalt.tab tat Y ORI, ORI Salphetale st Vgho -ato atogta gV “phe ave a0 400 BV Ahe B'a Btad'e 6 A0 9.0 B0 A8 R0 B¢ gt Gat et ha ba e ot a¥a gd ¥ ’-
:)
X K
: :'
. &
L A
x> ="‘
. TABLE OF CONTENTS (continued) A
1] ';\

l.\

o~

, Vita A
Appendix A: Error Correcting Code Matricies '{'

I. .\
- N
N Appendix B: GMAT Shell Script :_:-

Appendix C: PREG C Code .

Appendix D: Code Created by PREG _\
. A
- Appendix E: Assembler Skeleton o
Py Appendix F: Microcode Translation File
' Appendix G: Microcode Word Format ‘;:
- :::

-;
§e

: a -
%
. .Y

.:‘3

73
5 s
", . ¢
- "-:1
-~ .
~ S

-

- { .
«* S T\
& - '.-_ -‘:.
- vii P

\ Ry ~.' LN N S A T S R S A s S A Y

. - .-
-r'(./'.ff.r.-af..r.rf._. .\{\.__.'.ﬂ..(

‘\'-'\\-\‘\" '-'-‘»'\'.

q.*.'s
[4
vxy

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Figure 10:
Figure 11;
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:
Figure 22
Figure 23:
Figure 24;
Figure 25:
Figure 26:
Figure 27
Figure 28: Subroutine Stack
Figure 29:
Figure 30:
Figure 31:
Figure 32:
Figure 33:
Figure 34:
Figure 35:

4080-Point Processor
Memory Chip Partioning
Host Microcode Flow Chart

Processor Unit

Microprogrammed Control Unit

2-Phase Clocking Timing Diagram

Transmission gate
MSFF Description
Memory Chip Architecture

List of Figures

One-Transistor Memory Cell Logic and Cifplot
Bitline Control CircuitFy ..ot e

Sense Amplifier

Wordline Selection Decoder

Parity Bit Generator ...

Syndrome Bit Generator

Out Bit Generatorciiiiiiiiiiiiiie e
ECCC/ECCU Circuitrycccooiiiiiiiiii oo
Memory Chip Data Flow ...
PFA Major COmPpPOnentsccocovumiiiiiniiiiinae i
AFIT XROM Structureoooooiiiiiiiiiiiii e
XROM Memory Cell ...
XROM Sense Amplifier ... o

: Incrementer Half-Adder

Register Cells ...

Special Register Interfaces

Extra Circuitry for Selecting Configuration Bits ...

Gate-Level Description of a Register Select
NAND and NOR VLSI Gates

Register Sclect Cell with 00111 Personalization ...

ALU Logic Implementation

L d v""'{‘{-:-ﬁf' - 2

v, -
LA

'y s

.’l

A
. .

PR

R ad
2y B

AR
s Ay %yt
"

oo LA

LS

3.3

CAIT AR S S Sy

. v
v

SOy A
' et

]

-

AP
o

P BN A a b s 8 e e dita Bl 0l AU o'g Mo a0 ol okt ol ptal Sat tat tal Nal o "at, Yl Sel 'l Salo Sl ol Safl el taly 28 "a (Va8 ‘ot Sl Spll “ut Sl Pt Tat ol Sut ot Tl Bad At Sat ot >af. a8, al Sod ot

Y]

W,
-

f
‘47

e
Y

: List of Figures (continued)

YNy

s
¢

-")k !

Figure 36: Carry Select Adder Blocking ... 81
Figure 37: ALU Adder Cell ... 82
Figure 38: Source Determination for Register Selection 84

.
5 4
/s

<, J- k{~l

Figure 39: Source and Destination Determination for Data Busses 84
Figure 40: Data Flow for State/Scale Bus ... 86
Figure 41: Voting Implementationcoooooioii i 88
Figure 42: WFT Processor Load Determinationc.coocooiiiiiiiiniii, 89
Figure 43: Size Interface to State/Scale Buscocooooviiiiiii 90
Figure 44: Gate-Level Description of ERROR? Cell ... 91
Figure 45: Toggle Flip-Flop Gate-Level Representation 93
Figure 46: PFA Controller Floorplancooooiiiiiii 101 S

B
v
»

e
«
v 1]

-
e '..J'".'.'.

Figure 47: Prototype Memory Photomicrograph .. 103
Figure 48: Memory Cifplot ..o 104
Figure 49: PFA Controller Cifplotcocoiiiiiiiiiiii e, 106

PN A
n ¥ l“

".' "’ O{ l’.
Lo Fhe Sl

o« .
FAER

e e

AP At S
Y, 7
g)

>
.

RO R - I . . " " e e e . R T N e G ST TR SO
-_.f‘.u 'f..'f../. qf- e . e, L T T . \.. Y '_\. -\ % NI '_'\'_ - {L','J-{:-’

L (’l

"
4

b
b
RS
,\ﬁ\‘
L
]
b .
b .

List of Tables

Table 1: Voting SUAEEYooov i e
Table 2: Bitline Control LOIC ... e
Table 3: One-Shot Truth Table ...,
Table 4: ECCC and ECCU Determination ...
Table 5 Condition Selects ...
Table 6: Next Address Field (NAF) Selection ...
Table 7: Bit to Processor Translation
Table 8 ELR Translation ...
Table 9: TSR and PSR Translation
Table 10: PSi Translation ...
Table 11: Special Register Requirements
Table 12: ALU Control and Functions
Table 13: Register Selection and Bus Determination ,
Table 14: PFA-WFT Interface Translation
Table 15: WFT DFT Size Determination

Table 16: Microword Format

Table 17: BR_SEL Field .. .

Table 18: ALU Field L

Table 19 Bus Fields

Table 20- Register Select Translation

Table 21

SPEC_FUNCT Feld .

IR S R

B TR ST
PRI, S, S S S SR, Sy Sl S,

R
o

. "“'.::. d

l‘,.

L 4
-

T AENE S
R

@
|

.

'y 1 " .j ..l
s -."'." f

.‘v.;...
e .
- A

P A
a oAU R .

o . AR
RS

V@ e
SOV S

RN A S R SN

b .'- .'- Jele D
<

’ .

MR RERRER AR

>

v e

i e N

-
™
. J‘ ..
xi
PG G T i R S N s B R Y TGt e e W e e T R T e e S M N SN S S T P
- :1\ W LIS .Lt" e A BTN -..-. -~ LN NS -«.-. -.’-.-.'-. Y -.’-. ", Y \‘h\.\'\‘-.' ST Y ALYV

’ ;’/l'

AFIT/GCE/ENG/87D-5

Abstract

High-speed digital signal processing has a wide range of applications including,
radar, sonar, image processing, and target acquisition. The calculation of the Discrete
Fourier Transform (DFT) used in these applications has long been a significant
bottleneck for high-speed processing. Previous AFIT students have adopted a Prime Fac-
tor Algorithm (PFA) method using Winograd Fourier Transform (WFT) processors.
Three WFT processors are pipelined into a system capable of computing a 4080-point
DFT on complex data approximately every 120 microseconds when operating with a 70

MHz clock.

This thesis effort addressed the design and implementation of PFA controller chip
and interconnecting memory modules between the WFT processors. The PFA controller
is an application specific processor to control the flow of information in the pipeline,
interface to the WFT processors, monitor pipeline status, and take corrective action in
the presence of faults. The interconnecting memory modules buffer the data coming out

of a WFT processor and going into another allowing concurrent reading and writing.

The PFA controller chip was designed, simulated, and submitted for fabrication
through MOSIS. Twenty-eight 16-bit registers store the pipeline information. An
arithmetic/logic unit (ALU) computes data transformations. A read only memory stores
the microcode. A control sequencer sequences through the proper code segments. Finally,

special circuitry interprets the fault information and reconfigures the pipeline.

LR I Ay
T & % "

b

-
¢

Ve
-'D"‘l',

VeAreridr
4 A

.ls.

v 5
b

A Y

P
'y v
T

LS R

AR AR

4484

Pl A AL

T TR)
45N

LA

* .‘."q. 4

’

LS
P o I

2t
TN

W
»
% &

'l
(s

PG

R
A P
L P DU S
P By BTN
L
e

Bl]

Sty
.

~ vt
e

1

I

PN
Jr s

’l

e_»

I g
e a ’

rd)
P
efalele
> ‘e &

« W S e
L 4

Ll S g S Ji g

| 2t atie N oAt obh alla® 2ot eSSl A lab e S A et b e i e AR A AL A Al A Sl e A A\t it A e AR atanato sate ARt G NSRSl R Ra Nt Sl Sal Sed Rag dng G L R T on B Nl S.4 L

This thesis effort included writing a microcode assembler to to raise the user inter-
face to the AFIT-XROM silicon compiler. Raising the user’s level of abstraction to
mnemonic microcode, while still providing an error free path to silicon layout, reduces
chances for error in the microcode specification. A generic microcode assembler tool was
created as an extension for use with other application specific processors. This tools gen-
erates a microcode assembler from a word for:.at and a translation file The assembler
will output a file compatible with the XROM compiler. a VHDL description of the
XROM, a listing file, a reference file, and a reverse assembly This tool was tested on two

other AFIT theses and a computer architecture class

A prototype memory chip was designed and fabricated in 3 micron CMOS through
MOSIS to test the 1-transistor memory cell, the wordline selectors, and the sense
amphfiers. Simulations predict an access time of 10ns. A larger memory was designed.
simulated, and submitted for fabrication through MOSIS. It contains storage for 272
words of 32 bits each. It 1s dual ported and permits concurrent reading and writing of 24
bit data. The memory also includes error control circuitry for single error correction and

*

double error detection.

X1

K
L',:',_ :

P A

*

- R TR A _J
T

WAl

Y YN

.
4

L
RN

Y

P YW ey
. .

I X XA

\-I.".I
P

AR

A A

. XN
P4
Sl L

SETORRCINEE SR
Ly '."» . .'.-‘ s

4 ' h

et A 2
A N)
e p e, o

{l -'

. 5 1@

s

AN
2 "

P XA

o g

. s . . ‘. ‘.
¥ 'y .n' ./ P
o o

- e,
"l

TR .,"\ -
PR

‘v “a
L'

\,'l"l

DESIGN AND IMPLEMENTATION OF A
VLSI PRIME FACTOR ALGORITHM PROCESSOR

CHAPTER 1

Introduction

1.1. Background

The military has a demonstrated interest in high-speed digital signal processing
(DSP). Digital signal processing is used in a wide range of applications including radar,
sonar, image processing, voice processing, artificial intelligence, and target acquisition.
Applications such as these require data from sample points to be processed as near to
real-time as possible with a reasonable amount of resolution. A reasonable amount of
resolution is determined by the importance of the application and how accurate the
results must be. Since resolution increases with the number of points sampled, it is logi-
cal to increase the number of sample points. Unfortunately, as the number of sample

points increases, the number of operations increases as the square of the number of sam-
ple points (i.e., O(N?)).

Many current DSP applications involve computation of the Discrete Fourier
Transform (DFT) which uses only a finite set of sampled signal values instead of the ori-
ginal analog signal. Using a finite set of points allows the signal to be processed and

stored on a digital computer. The DFT, in summation form, is as follows:

‘-{.(-f-"—',,-*x‘.,-(.- ..'.J‘-.ﬂ' . 3 >k‘~¢-f-..v -}‘-‘v;-'. »'mw \.,A-.‘ “. *‘ LIPS N
A G A AR L U T GG O AN G Tl LI VA ARG B LR R TR AR T et Y, O

(\ .'\ .“l),
»

...r l_¢ "

ARy s

AR Y

["
-4'-.\‘&"{‘:1'* “

Y

TN S 30 I 4
s,
'

. T w- ;
Sl L) L(':'

. %

s

AR A

L v A e, e,
'.‘4_1 yy 2l

r

U AT

s "¢ N
A

P

~
vy
“~

00 00 08 Mal 120" Sal 48 Jat Sa8 S48 tal Vay b Yoy o tal ah tal Val e cal vad vl tal ahatata s’ Nt gve g% ‘ad'at's $'ad ‘Bl gl B® A% S B0 fa® o

" »
" -~
(])
. N-1 7]
[o X(k)= S z(n) WP k=0,1,.,N-1 (1.1) oA
‘ ‘unt n=0 W :
where W sub N "=" e sup {-j(2 pi /N)}. Since the number of computations grows as
J ¢
\ O(N?) when computed as a sequence of inner products, the DFT is not usually computed $
A
-,
N directly. Instead, a class of algorithms developed in 1965 by Cooley and Tukey [Coo65] N
. F)
. is often used which capitalize on the symmetry in the DFT to reduce to complexity of P
) ,.‘
. '
computation. This class of algorithms, known as Fast Fourier Transforms (FFTs), .4
z:_
reduces the number of operations from being proportional to the square of the number of I
? sample points, as in the DFT, to the number of sample point times the log of the .:
D" _:.
:: number of sample points (i.e., O(-12llog2N)). The introduction of the FFT made many ;'-
. N
A e"
DSP applications possible on digital computers. "
o
_’ Prior to the introduction of very large scale integration (VLSI), most DSP computa- :::
’ . . iy “
‘1_ tions were performed on-line by general purpose computers, requiring large amounts of e
L
) time, or off-line by special purpose banks of circuit boards using medium scale, or small r-:
. N
.- l\
» scale integration (MSI or LSI respectively). Because the constraints of throughput and N
- ~
. blocklengths were so high, real-time computation was not possible. The increased speed Y
. and density now available in VLS], will allow certain DSP functions to be implemented ',:
o s
L on a single chip. e
B ..’
o .
‘ One way to further increase the speed of the DFT is to reduce the number of multi- .
", plications since these are the most consuming. In 1978, Winograd showed a way to :::
. "
" reduce the number of multiplications of a DFT while keeping the number of additions)
Lt
+ approximately equal. He also proved that his class of algorithms, known as Winograd ~,
o+ Y
L4 .
’ Fourier Transform Algorithms (WFTs), contain the minimum number of multiplication
¢ .
. required for computation of a DFT [Win78|. Winograd’s large algorithms, however, do
. 3
;e -
: 2 N
;
['¢
A,/ E S R, U e o Y Y A I G R S R g A S A L L LU A LD AT,

not easily map into VLSI because of their size. But, when the small algorithms are com-
bined with the Good-Thomas Prime Factor Algorithm (PFA), they easily map into VLSI

due to their small size and regularity [Lin84].

In 1985, a 4080-point transform was chosen as a representative system by the AFIT
VLSI Design Group. The system consists of three WFTs of lengths 16, 15, and 17 pipe-
lined together with interconnecting memory modules and a PFA controller. The block
diagram of the system is shown in Figure 1. The goal of the WFT-PFA project is to
produce a real-time signal processing system. With the PFA operating at 20MHz and
each of the WFTs operating at 80MHz, one 4080-point transform will be computed every

120 seconds.

1.2. Problem Statement

The first problem of this thesis effort will be to design the memory modules and
implement one in 3-micron CMOS. The second problem will be to design the Prime Fac-

tor Algorithm controller chip and implement it in 3-micron CMOS.

.
'
~

1.3. Scope

-~

¥

A

This thesis will include the design and implementation of the interconnecting

SN
S

4

memory modules and the PFA controller. First, the memory module will be architectur-

’

y-

ally specified, layed out in VLSI, and sent for fabrication; second, the PFA controller will

rror
fy %Ky

be architecturally specified, laid out in VLSI, and sent for fabrication; third, both chips

f"f..

AR

will be tested to ensure proper operation and validation.

WY S
Y

.y
FA

R o o, et
A a . e w
A AT, VAT AN AT R

T T ETE T AT WPV

_r‘ww'—r‘-—-—'—' - .
.
o
"N
«
P e e

' A
- HOST - ',.
Ky
l,’n
.
20 MHZ e
Clock \:
1 e
; PFA CONTROLLER !'3_-
Y * o
ECC | ECC | ECC ECC
MEM WETA MEM WFTA MEM WFTA MEM N
16 , 15 17 A
1 - ranagl AN) Y
H WETA Sl HA WFTA S04 T WFTA]
™ - N SR oo ol S B A oo A
16 B 15 17 -
i) .
80 MHz , 80 MHz , 80 MHZ] >
Clock | LyWETA LY clock | L WFTA L | Clock WETA | X,
16 15 17 NG
s
g

«

L.

e
LS I]
.

. e ..
AT A e .
.)
.

Figure 1 4080-Point Processor

1.4. Approach

This thesis will include the design and implementation of the interconnecting .
memory modules and the PFA controller. First, the problem requirements and their
impact on the design will be analyzed. Second, the architectural descriptions for both t
chip will be developed. Third, the architectural description will be translated into gate-)
level descriptions and from gate-level descriptions into VLSl Fourth, the completed E.
designs will be simulated to verify the design Fifth. the simulated designs will be sent .!:\'.:

=
for fabrication through MOSIS. ';‘_
::

2t
4 e

s
)

o

-

T AT, e
- o » .I) L] CuN . . .
L A G R A P -

s adh *ata B S e T A O B e .

OISO s

1.56. Summary of Current Knowledge

1.5.1. Digital Signal Processing. The current state of fast signal processing
algorithms was forged in 1965 by Cooley and Tukey [Coo65. They demonstrated a

method for computing n-point discrete Fourier transforms that required on the order of

O(NlogN) computations instead of O(N?). Their algorithm took advantage of the sym-
metry and periodicity inherent within DFTs to reduce the number of operations. This
method, known as the Fast Fourier Transform or FFT, brought signal processing to digi-

tal computer computation.

Another important contribution to the field was Winograd's work published in 1978
'Win78 . Winograd presented algorithms that significantly reduced the number of multi-
plications required while keeping the number of additions approximately equal. Wino-
grad also showed that his method required a minimal number of multiplications.
Because multiplications were much more computationally intensive than additions, his

method significantly reduced the computation time.

For a VLSI implementation, however, Winograd's algorithm lacked the modularity
needed for effective VLSI design and the number of additions grew quickly as the
transform size increased [Lin84). One solution to this problem was given by Burrus who
combined the Good-Thomas Algorithm (PFA) [Goo71 & with small Winograd transforms
Bur83'. This combination took one-dimensional transforms and broke them into smaller
multi-dimensional transforms. Finally, Linderman [Lin84 presented a way to embed the
PFA into VLSI using Winograd Fourier Transform Algorithm (WFT) processors. His
solution consisted of decomposing a 4080-point transform into three Winograd processors

of lengths 15, 16, and 17.

T e e e e At e e Tt e T W T T T TN
AN AT PR S . SN, N S, LS. S ol AN G N\ Sl K Wl A W WD U R W Wil Rl W

v
o 0 .
a

Yy
.

il AT

ST Y T Y Y . .
PR Y NN Y e R

PR I IR
‘ b I RO
4

AN AP P
N A

.
)
a

B

IR A U Y
T s,

(% S a0 pot a8 pot gob o a8 ‘Rt Sgat alt VORI UE TV RN T T NP N TR ro T ey 0% il o, Ty 4 iap cap cal e,

.- In 1985, four theses were dedicated to the implementation of Linderman’s solution.
Taylor presented the PFA and WFT theory, the overall signal processing architecture,
and the numerical precision results [Tay85]. He showed that architecture would indeed
compute a DFT and remain within acceptable numerical accuracy. Coutee described the
arithmetic circuitry for the WFT 16-point transform processor [Cou85]. Rossbach
presented the control circuitry for the WFT 16-point [Ros85]. He was able to demon-
strate that the control sequencer operated correctly at speeds in excess of 60 MHz in 3-
CMOS. Finally, Collins presented a description and vahlidation of the WFT 16-point in
the VHSIC (Very High Speed Integrated Circuit) Hardware Description Language, VHDL
[Col85 .

In 1986, two theses were involved in the PFA-WFT project [She86]. Shephard com-
pleted the VLSI design and implementation of the WFT16 chip and Hedrick discussed
“. the memory modules and the PFA controller. Hedrick established the foundations of the

\ PFA-ASP by describing the major functional blocks and their interfaces.

1.5.2. Memory Techniques. Weste and Eshragian classified memories into

) three types, random access, serial access, and content addressable [Wes85]. Random
access memory, at the chip level, was described as having an access time independent of

location. This contrasts with serial access and content addressable access where the time

needed to read or write a value was variable depending on location. Random access

memories (RAMs) may be further classified into read only (ROM) or read and write (usu-

ally referred to as RAM). ROMSs are generally denser than RAMs but they are not as

fiexible due to the permanency of the data.

RAMSs and ROMSs can be further be divided according to whether they are static or
dynamic. In a static memory, the value of the data is stored with some type of latch,

6

A AT TN f._.“‘-(s - e SO S S '..._. e PR e e T e e T e T et e e e

i e NN A A e A T T T

YWY "W
-’ l',] k

-y s
X

LK

v ¥ =
VN

A

ChA

3
-

iR A A A
Yerire e
" J

-

%
* L

L N S

v
A

';'l’ 2" &

- oW

«
v 8

4":
EAA A

a_
SN

Plls

.

T

A

g NP

I S T}
e e s

» -
. /. ,a?

o
(s

Ve,
L)

ST
ey

[A SN S S SN S 4

PR

(4

F

whereas in a dynamic memory, the value is stored with some type of charge on a capaci-
tor. Because the dynamic memory is stored on a capacitor, its charge will degrade and
must be refreshed within a certain time interval. The advantage of dynamic memories is
that they are much smaller than their static counterparts and use less power [Muk86].
Dynamic memories are smaller because there is no feedback circuitry within the memory
cell to keep the location refreshed. The disadvantages are that they are hard to design,
somewhat slower than static memories, and more suspectable to soft errors (errors caused

by transient radiation).

Several authors described a dynamic memory consisting of a single transistor
[Gla85, Muk86, Wes85]. In this type of memory cell, the charge was stored on a capacitor
and a single transistor acted as a gate between the bit line and the capacitor. The value
was written and read via the bit line. Various techniques for making the capacitor have
been implemented including a double polysilicon method and a trench method ([Rid79).
These methods tried to increase the amount of capacitance in the memory cell by exploit-

ing non-standard techniques.

The most difficult part of a one-transistor memory cell is the sense amplifier. When
a cell is read, the resultant value on the bit line is determined by charge sharing between
the bit line and the storage capacitor. Because the storage capacitor is so small com-
pared to the bit line, when the cell is read, there is little voltage change in the bit line.
To detect this small change, a very sensitive amplifier is needed. A sense amplifier will

amplify the change to levels that correspond to digital logic values.

In 1985, Shinn designed a double stage differential amplifier with current mirror
active loading [Shi85]. He detected a differential of 0.01 volts when reading the value

and its complement. Grebene fully described the transfer characteristics and gain of such

r e e e e e e e S -.-‘-\N‘.'-'o’-'.\'\ \\‘-\\\\\

0

._’

LR
Y

B RS P I P R
ST T, AN

" “ ‘l l' .l ‘l ..I ‘.

AR

AT T
s w
.

.
PLR
el e

R

BRARRARIh &

'.“v ‘e 'n -(-,

.

s
I'.. H
»

M. l_'.
PN

d

()

[N NENEAE

Ifl.'
A

s,

A
el S
4

T e T e A N e e e N v
s o2 s T e T A A A P o s e e

an amplifier in 1984 [Gre84]. He found that the gain was directly proportional to the

P
KN RN
current loading and the width to length ratio of the gate on the nMOS devices to which
“n
the voltages to be sensed were connected. :..
)
>
A
1.5.3. Error Control Coding. In the transmission or storage of data, noise or >
~
other factors may cause erroneous results. In 1949, Shannon demonstrated that a proper
encoding of the information could reduce the number of :rrors induced by a channel ’_::
iSha49,. Peterson and Weldon pointed out that as early as 1956, systems were being "
buiit that demonstrated error correction and detection [Pet72]. ‘_
A typical storage system with error correction and detection consists of encoding :'.':
“w
vy .
the data before storage or transmission, the storing or transmission media, and decoding -
‘-
to output the data [Hed86]. With this kind of system, two different types of codes are X
Al
popular, convolution codes and block codes. In a convolution code, the encoded data is C:
‘D— v based on the current data as well as previous data, thus requiring a storage media associ- ~3
x
f"
ated the encoder. In a block code, the encoded data only depends on the current infor- :‘;
-
4
P
mation [Hed86]. I
Since digital computers deal with information coded in binary digits, the discussion o
~ -
of block codes can be limited to those with two symbols [Lin83!. Lin and Costello o
developed algorithms for block codes of this type using syndromes and standard arrays.
Their algorithms will accomplish single error correction and double error detection. :::.
1.6. Materials and Equipment ~;
The materials and equipment needed for this thesis are available at AFIT. All the ::::
computer aided design (CAD) tools require a UNIX environment. The tools from the -
‘-:.."-:. AFIT/VLSI CAD system will include CSTAT, a tool that determines whether nodes can :-:
S ~
8 N
-\‘.
Y
(&}
?..
~

“

ﬁ;-_' -':‘"’I~.£: v -:.:'l,'l'..:é.‘_f ol ~;~2§\;‘}r¢_.4 N AT e O o e O .’y W, e -f L Oy '.ﬁ.: KL PCAN N RIS -’ N .‘_:-‘_ L

-
-

be set to logic 1, set to logic 0, aflect the outputs, or can be affected by the inputs,
STOVE, a circuit extraction tool, NOFEED, a tool which removes feedback paths for
simulation, and FIXROM, a tool that alters the XROM for simulation. The other CAD
tools are from the University of California at Berkeley. These tools are distributed each
year to various academic institutions. The tools necessary for this thesis include MAGIC,
a VLSI layout tool, MEXTRA, a circuit extraction tool, ESIM, a switch level simulator,
CRYSTAL, a performance analyzer for VLSI circuits, SPICE, a timing analysis tool, and
CIFPLOT, a tool to plot VLSI circuits. MAGIC requires either a SUN Workstation or

an AED 767 graphics terminal, both of which are currently available.

This thesis will also require the use of the VHDL language. This language is sup-
ported on AFIT’s Classroom Support Computer (CSC) operating under the VAX/VMS

operating system.

A high-speed VLSI chip tester will also be needed. The tester is located in building

125 Area B.

1.7. Sequence of Presentation

Chapter 2 gives a detailed analysis of the requirements needed for the two problems

of this thesis. First the memory is discussed and then the PFA controller.

Chapter 3 presents the architectural descriptions for the memory chip and the PFA
controller chip. It also discusses the algorithms involved in the error control coding for

the memory and the algorithms involved in the operation of the PFA controller.

Chapter 4 discusses the AFIT CAD environment and the VLSI design methodology.
This Chapter also discusses development and operation of the Generic Microcode Assem-

bler Tool.

.- "

Chapter 5 presents the VLSI description of the circuits used to implement the

memory and the PFA controller. The development of the microcode is also presented.

Chapter 6 discusses the results of the thesis effort The features of the memory chip
as well as the PFA controller will be discussed. This chapter will also discuss the results

of the microcode assembler on this thesis effort and two other applications.

Chapter 7 discusses the conclusions from this work and presents recommendations
for future work. The future work will focus on testing the parts of the pipeline and

implementing the prototype.

r':
]

s
.
ae)

v
Y.
a
L)

10

P AAA

A

PR A D AW

.
’,
[
.
.
L.
.
Iy
.
e
)
[
.
.
.
»,
~
2
»

> p

LA e B

L T) ‘1’{‘} -‘.

el
¢

P
o
[N . ¥

v
AU

SR AF I

'-.,.-’ " ..’:.. NI AT P AT A RIS A._\'."_ S

P Y
N
)

4,030,020 8 W A%l TV VTV rTw Aty o8 N Y, 7 A ool " 08

CHAPTER 2

Detailed Analysis of the Problem

2.1. Overview

The scope of this thesis eflort is to design the memory modules and the PFA con-
troller chip. The memory modules are used as a buffer between the different stages of
the WFT-PFA pipeline. They allow concurrent reading and writing so that the WFT
processors may operate asynchronously with respect to each other and keep data flowing
through the pipeline as it is needed and generated. The memory also encorporates single
error correction and double error detection based on an (n, k) linear systematic block code

to correct some simple errors and provide some error monitoring for the PFA controller.

The PFA controller operates and monitors the pipeline. It is responsible for the
pipeline data flow, fault monitoring and reconfiguration, if necessary, and communication
with the output host. The PFA controller is considered to be an application specific pro-
cessor containing elements to store and manipulate data, sequence through a set of

predetermined states, and communicate with outside activities.

2.2. Memory

There are six major areas in the memory design. These are the interfaces. the data
flow. the storage cell, reading and writing, address selection. and error control coding.
The memory act as buffers for the data as it travels through the pipeline. Thus, there are
predetermined interfaces which the memories must conform to as set by the previously

designed WFT processors.

11

v "1y
P

y -
ol 7

\

- ..‘_‘"

(A N
ARG

-

A

‘.l' .'l *'

v
%

T e

'.f'- v ol

EA

vy

WPttt
f,sss:.'»\"

ﬁ'\;'ﬁ-';
P
4 -

’4"'1"

'
'I'n
i 4

AA

. e

N
A
PRI

o
’

TarT 2.2.1. Interfaces. The first constraints imposed on the memory chip are

N
8

those of the external interfaces. The PFA controller interfaces with the memory via a

N
LEFT(RIGHT) signal. This signal determines which side of the memory is written to and .'.'_
~
which side is read from. Additionally, the memory is required to send two signals to the N

PFA controller for error monitoring. The first signal is the Error Control Code Correct-

able (ECCC) and the second is the Error Control Code Uncorrectable (ECCU). The

ECCC signal flags the PFA controller that a single error occurred and was corrected.

The ECCU signal flags the PFA controller that a double error was detected and therefore

the data could be flawed. These signals will be discussed more in Chapter 5. The WFT

processors interface with several groups of signals, the address select lines, the input data

lines, the output data lines. and PRECHARGE. There are 12 address select lines capable

of addressing up to 4096 words. Each word is 24 bits long. giving 24 input data lines and

‘.‘ 24 output data lines. The WFT processor on the left, or host in the case of the first
| memory. feeds the 12 write select addresses and the input data to the chip and the WFT
processor on the right. or host in the case of the last memory. feeds the 12 read select

addresses and receives the output data

2.2.2. Data Flow. The basic data flow through the chip is as follows; for the

input data, the inputs come into the chip, pass through the ECC encoding and are writ-

: ten into the memory. for the output data, the values from the memory are passed
through the ECC decoding and then sent off-chip to the WFT processor. To include
concurrent reading and writing by two processors, two banks of the memory must exist
so that while one bank is written the other bank is read. To accomplish this, the
memory chip must be able to route data from the encoding circuitry to either side of the

memory and from either side of the memory to the decoding circuitry. Additionally, the

12

o
o
®
4
L4
‘.

. -
A T I R R B I I B T L

Dl i

- - 0" "-f.‘. o

™

S
e’

.

Tt
~ "J-"":"

PRECHARGE signal from the processors must also be routed to the side of the memory

the respective processor is using.

2.2.3. Memory Cell. The memory cell holds the value of the input data for
later retrieval. Ideally, the node should be able to store data for more than a mil-
lisecond. Two types of memory cells can be used, static or dynamic. In a static memory
cell, loss of data due to leakage is not a problem. Static memories, however, are large
compared to dynamic memories. Additionally, dynamic memories with no refresh are
much more dense and less complicated that static memories. Data must be read within a
certain time interval or it is lost without refreshing. One of the main results of this thesis
will be to determine whether the memory cell will indeed hold the value within the time

requirements.

2.2.4. Reading and Writing. The WFT processors operate at a clock fre-
quency of 80MHz outputting a new word every other clock cycle. This means that a com-
plete read or write must be accomplished at 40 MHz, or one operation every 25ns, for an
input/output bandwidth of 9.6x10® bits per second or total bandwidth of 1.92x10° bits

per second.

A complete write includes inputting, encoding, address selection, and value storage.

A complete read includes address selection, value sensing, decoding, and outputting.

2.2.6. Address Selection. Each read or write must be able to access any one
of the 4096 words in a non-linear fashion. The order of accesses is determined by the
Prime Factor algorithms used to compute the Winograd Fourier Transform. Address
selection is also included in the 25ns access time. Several different approaches to address

selection will be discussed in Chapter 5.

13

N TN AN AT e L
Nax o e

. e

XA

S

AT e
. Y

v
"

LI
R

Rt
PR R
L,

r AT
[SRLIN W o

=
«

v
1

o -

[
’

U

e e S
T

et -
e .
, .

PR RN adE

-

Ty e -
PR A
PP

LA T e
» .

,,‘.
PR S
LR L

[N
“e e
’ ',"' L

5rl'lrl'l' Yot
B
L

“

(3

A

&

‘re
.’1, . %

.
[]

.
e
»
v

o
| e
! [
| N,
=
2.2.8. Error Control Coding. As described in Chapter 1, the Error Control ::
» -»
el S
RS LY
-’ Coding is used to provide error correction and detection. The ECC included on the o]
®
L
memory chip must be able to provide single error correction double error detection for f:::
o
A
the 24 bits of data. The ECC to implement this consists of four functional blocks. The e
ASA
* H
first block is used to encode the data before it is written into the storage array The "!: '
PIgX
input data and the parity bits are then written in to the memory. The second block 1s e
A
used to decode the output data into the syndrome bits. The third block takes the syn- :\"f:
ARy
drome bits, computes the error vectors and generates the ECCC and ECCU signal dis- o
s
cussed earlier. The fourth block takes the error vectors and the output data and gen- RO
RN
erates the data output to the WFT processors. DAL
S
o
]
2.3. PFA Controller
As stated earlier, the PFA controller must be able to process instructions and take -‘;:-';
60 appropriate action on conditional data to accomplish its three major tasks. The first of ®
-
these tasks is the ability to sequence through a set of predetermined control states. the S
second is the ability to store and manipulate data, and the third i1s the ability to com- Ry
Sl
municate with ofl-chip activities. The requirements for each of these major tasks will be .
described below. Tl
2.3.1. Control State Sequencing. To control the total state of the system. ®
the controller must be able to sequence through a set of predetermined states These _-_".:,_
states control the functioning of the pipeline, the storing and manipulation of the data. T
NN
Pai™
and the pipeline configuration. These states are expressed through the use of microin- L
structions. The microinstructions are stored in a read-only memory for execution The -'_'.'_-;
.':'r
control sequencer determines which of the microinstructions will be executed next based P
~
]
A =,
R BN
l.. 'y ’.-.-
14 R
-
o
PR
P
o
oo
-~

on the current microinstruction. The source of the next microinstruction can either be an
external address, the next sequential address, a field from the current instruction, or from
the top of the stack. The sequencer determines the source from a set of input conditions

and certain fields from the current microinstruction.

2.8.2. Storing and Manipulating Data. Subject to the control states, the
PFA controller must be able to store and manipulate data. The controller must be able
to store data which is passed from one stage of the pipeline to another after each DFT
computation. It must also store information regarding pipeline configuration, catas-

trophic pipeline failure, memory faults, WFT processor faults, error location, and indivi-

dual problem status.

The information that must pass from one stage of the pipeline to the other is the
scale factor. The scale factor is a 3-bit number indicating the number of scale bit on the
data words. A 3-bit scale factor is input along with the data to each WFT processor.
After the WFT has completed the DFT it passes a new 3-bit scale factor. This scale fac-
tor 1s passed along to the next WFT processor in the pipeline. The total number of scale
bits is accumulated in the PFA controller for each problem as it travels through the pipe-
line. Thus, the PFA controller must be able to store a 5 bit number for each problem at

worst case (111 = 111 + 111 = 10101).

In addition to storing the data, the controller must also have the ability to manipu-
late it as well. Information from one source may need to be transferred to other sources
or used in determining future controller states. This includes loading values from the
pads, driving values to the pads, shifting a storage location, comparing two storage loca-
tions, and adding storage locations. For example, it will be necessary to increment the
number of faults stored for a particular processor each time it fails.

15

R o e r vy M A el (S L A R AN

N e 2 To e
O AN
. - -

AR

P

A ™ R Y Y Y
R R

.l'.l'l
CALA A

.
-y
<

-

l.l.ls‘H
Nt

< ‘l.

>

.
,.1.1
'y e e

IR IR S R o SN {
.

" l."' .

o7
v

’
¢

N A 4 s,
PA XA

[s

Tt Ml
'y s '\"l"v".‘; :I" P

S
oo

e,

R

AT
%

A

PR

oy
(a0

A

Cey f“"

AR

PN

Al

aihde o BN

-+

2.8.3. Communication. The controller must be able to interface with the

pipeline it operates and the host which submits DFTs for computation and receives the

results. The following is a list of those signals which the PFA controller must be able to

input or output:

ST IVIS

Memory Chips:

1. FLIP (from controller) - Used to determine which side of the memory is read from
or written to. One signal for all memory chips.

2. ECCC (to controller), Error Control Code Corrected - Used to indicate that a sin-
gle error occurred in a read operation from the memory and it was corrected. Each
memory has its own ECCC.

3. ECCU (to controller), Error Control Code Uncorrected - Used to indicate that an
error occurred on a read that could not be corrected. Each memory has its own

ECCU.

WFT processors:

1. WFTop (from controller), WFT Operate - Used to put the WFTs processors into
computation mode. All WFT processors share one WFTop signal.

2. WD (from controller) - Used to put the WFTs in the operational or watchdog
mode. Each pipeline stage has its own WD signal. (The signals described here in 2,
3, and 4 share the state/scale bus. This will be explained in Chapter 5)

3. 520 and SZ1 (from controller), SizeO and Sizel - Used to send the DFT size to the
WFTs. Each pipeline stage has its own SZ0 and SZ1.

4. SCO, SC1, SC?2 (bi-directional), Scale Factor 0,1,2 - Used to send the input data
scaling factors and receive the output data scaling factors. Each pipeline stage has
its own SC0, SC1, SC2.

5. PE (to controller), Parity Error - Used by the WFTs to signal that a parity error
exists in the input data. Each pipeline stage has one PE signal.

6. WDerr (to controller), Watchdog Error - Used by the WFTs to signal that a
Watchdog Error has occurred. Each WFT processor has a WDerr signal.

7. WFTdone (to controller), WFT Done - Used to signal that the WF'T has finished
a DFT. Each pipeline stage has one WF Tdone signal.

16

"""" PR A S S S

Vo'W, R o, o G e i

8. LOAD (from controller), WFT Load - Used to signal a WFT processor to receive

information on operation, scaling, and DFT size. Each WFT processor has its own v
LOAD signal.
.
HOST (these signals will be explained in Chapter 5): X
~

1. PFAop (to controller), PFA Operate

2. PFAdone (from controller), PFA Done

3. LOADSTUFF (to controller), Load/Read PFA

4. Hs{,Hs3 Hs2 Hs1 Hs0 (to controller), Storage Select
5. H15-HO (from controller), Internal Data Output Lines N

S ANEINT N

-y
o

AN S YN

17

LR A P L N A A R A s S S i N D T b e O N I R S B S e amat
Far Y I .- - . - et .o A

> LA SRS

et

e
L)
“
A

4
i
1
A)
-
B
.
"
w
.
v
'
'
3
"~
-
-
-
o e
‘:
-
o
o1
p
"
-
-
]
»
A]
-
K.
J
|
.
a" e}
'
« '.".-‘
. e

O R I
- - \ \ -

“

O N AL N N A R S A A A AT AT R At T R AT I I R

CHAPTER 3

Architecture and Algorithms

3.1. Overview

This chapter discuss the architectures and algorithms used in the memory and the
PFA controller. First, the memory architectures will be presented and then algorithms
for the error control coding will be presented. Second, the general architecture for the
PFA controller will be discussed then the algorithms used to operate the controller and
the WET processors will be developed, and finally, the resulting architecture will be

shown.

3.2. Memory

The memory can be broken into three main sections, data flow, storage, and error
control coding. The data flow section deals with controlling the flow of data through the
chip. The storage section discusses the actual storage cells; how they are selected, written
to. or read from. Finally, the error control coding explains how the single error

correction ‘double error detection is accomplished.

8.2.1. Data Flow. As previously mentioned. the memory must be partitioned
into two halves to allow concurrent reading and writing. This partitioning is shown in
Fig. 2. The data initially enters into the memory chip from the input pads. from there
the data is passed through the input ECC circuitry and then to either memory side. A
control signal determines to which side of the memory the data is written After a side

of the memory is read, also determined by the control signal. the values output by the

18

vy

P RS
IR

-

o
.'v"'.’.lf d

. e
h o)

TS

pl

r "y ':'.‘!

A

.'.-l,.<l
s e

s

Ty
P

-.,,,.._-

e

K‘.‘ o L’
ottt

2 DA
-

.

L.,

R R
"l‘ll
LI Y

PR
b
o
.

v

L S N BN L R A I
""&‘-51N) < '..' . ..' -" “

N I AP
I{ ".

2es

R N

@
)
g

.

RN

Inputs

1
Encoding

M

RAM 1 RAM 2

1
Decoding

|

Outputs

Figure 2 Memory Chip Partioning

memory arrays pass through the output ECC circuitry and then off-chip through the

output pads.

3.2.2. Storage. The storage area consists of several units, the word select,
the memory cell, and the sense amplifier The word select umit inputs the address hnes
and determines which of the 4096 words will be selected for the read or write operation
A memory word consists of 32 storage cells activated for reading or wniting by a single
word select hine When the value 1s read. the sense unit will detect the <tored menmiory

value and amphfy 1t for further use in the chip

3.2.3. Error Control Coding. Error Control Coding 1s accomphshed n twe
steps The first step to encode the input data and the second step st decode the data
from the memory before sending off-chip The next two sections outhne the devel panens
of a systemetic block code described by Lin and Costell LinN3 The matriows for b

code were developed by Major Prescot in 1985

19

O AP '.f".r'r"f‘.' s e S A St L

s

T
55

WY

v,
(Y

Y il

ey
RN

RN

-

LI
3

SR LA

v -
.

LML NN

o

-
.

watels

'l').l
LI

I il NS U P S
‘.: A e

e
P)

TN WL
:.I'I’.’f’ .

L MONENENEN

D S L L L T T g Vit Sk i Sl Sl W O
PSRN NI A S NI N IEN ATIIN M A AS M A

8.2.3.1. Encoding For this memory, a message is defined as an input word of
24 bits and denoted by u where u={ug, usg,...,ug). With 24 bits, the maximum number
of distinct messages is 22! or 1.68x10". The encoder transforms u into an n-tuple, v,
where n>>24. The mapping of u to v is one to one and the set of all vectors v is the
block code. Additionally, the 2* code words (k = 24) form a k-dimensional subspace of
the vector space of all the n-tuples over the Galois field GF(2). Twenty-four linearly

independent code words, go0.g1. .. . ,&2. can be found from the block code such that
every code word in the block code is a linear combination of the 24 code words. The

resulting relationship between u and v is,

v=uggo+u g1+ - +uxmgos. (3.1)

The 24 linearly independent code words can be arranged into a (24 x n) matrix. G. so

that,

[g0 | ryo,o goa 90,-.—1'
g1 gi0 911 " Gin-1

G = = (3.2)
823J g230 9231 9g23.n-1

G 1= considered to be the generator matrix for the linear block code. If

u = luy u, .ua3}1s the word to be encoded. then the code word. v, is given as;

uG

<
It

“a " w .l“ 2 » .
- A

L3

...\’I'

N

el
(R IR

~

T AT

K l.l L S

Sabmhedtite s a8 s ¢ Sla ALt ol el Sal Sl Wl Oal v ol tod *ot o) Aaf O b A Vol iad AL S0 L' et £ 8 ate i od o Ve o0 oB ais ota-otateSaclas cdatlaf et et So0 Tt L b o et 2o

¥

2y
[I)
. s 0

e o A&

’,
N
Ry
-\ ;
[] N
N So R
_.:,. € N
=(u0,u1,...,u23,-) (3.3) '.
. N
LY,
g23 o
[[
L J'
g
= UpBo+u B+ UxmLos. N

»
s

’

T \.:.‘ b ot

L

PR

2

o . , ,) i Xu
A variation on the linear block code is the linear systematic block code. A linear \
-
-...
systematic block code divides the code word into two parts, the message part and the o
l\.-
redundant part. The message part consists of the original input bits and the redundant :
..~ ‘
part consists of parity-check digits which are linear sums of the input bits. For a linear '
systematic (n, 24) code, the 24xn G matrix has the following form: o
~ -
. 8o [Poo Po1 - Pon-m 1 0 - O -
‘:. 8: Pio Pra "~ Pin-s 01 - O L.
G= = (3.4) =
R
g P23o P21 - Pwa-23 00 - 1 g
. | ..
~y
. .o)
where p,, i1s a binary digit. Let P denote the first part of the generator matrix and I, =
A
AN
denote the 24x24 identity matrix. Then G = [PI‘“] The code word now becomes A
v={_(vg.ty.. . . tn-1) (35) 'f::
= (ug.uy. uy) G o
I I.
. '
The last 24 bits of the code word correspond exactly to the original 24 in bits the input e
.,'.-
word and the first n-24 bits are the redundant parity-check bits. The equations used to o
compute the first n-24 bits are called parity-check equations and are of the form: O
I'.‘:“_\ -:‘
21 .
-
N
T A A, A S W S vy L R L TR R T T 0 s T o e S I S SRR o4

NN

I e
LAY

i
i
|
3

A AT Y W VL T WV, v, vy

vj = tugpo,; + t1P1,; + -+ umpas,, (3.6)
for j =0 to n—23. For our case we use 8 parity check bits making n=32. Appendix A

shows the resulting P matrix. Using Eq. 3.6, the corresponding parity-check equations

from matrix P are:

vo = upturtugtu+ug+ug (3.7a)
vy = totu)tugtustur g (3.7b)
v =) +ugtugtujptugtuo (3.7¢)
vz = ugtuztugtuj +ugtugg (3.7d)
vy = ugtus+ujpgtueturtugg (3.7¢)
Vs = UgtugHuj+ujz+ug+ug (3.71)
vg = ug+ug+ujotuy+tjg+uae (3.7g)
vy = Ug+ug+uz+u s+ugtug (3.7h)

The code word v can now be expressed as:

v =(vg, ..., v7,4p,...t423),
where vg, . . ., vy are from Eqgs 3.7a-h and ug, . . . , ug3 are the original input word u.
8.2.3.2. Decoding Once v has been stored in the memory it may be exposed
to conditions which cause errors to appear. Because of the extra parity bits, the decoding

scheme will correct single errors and detect double errors.

Let r =(ro.ry,...,r3) be the word read out of the memory. This word may or
may not be different from the word initially stored. Now let e be the vector sum of the

code word, v, and r such that,

e =v+r = (eg, €y, ..., €3). (3.8)

where ¢, is the boolean exclusive-or of v; and r;. Alternately, r may be represented as the

vector sum of e and v.

22

™

-

A AT _ R N N g A R S AR S LA L SN L
+ »

YA
i 1

'y & %

4

- ‘I’f{f"‘l-

L bl

P v
 *x

o

TP
LA

T
RN

X -y

S,

A
s e e Y
? -

v
a

-t

YN

ot
l...'.(l

IR I I Se b PRy
| 2RI -
P

LD
r
xS

:'.{'.'-v"-,;'-'

.
)

i

Ly

. .".“- e
Pl e

g
o

AAAM
s

4’

OO TITIRS S
LT,

4
S

P .l. ’ -l. -
oAy

< T

v

o

»
DA
L

It is necessary to introduce another matrix associated with the block code. This
(n—k)xn matrix H, commonly referred to as the parity-check matrix, is defined so that
any vector in the row space of G is orthogonal to the rows of H and any vector that is
orthogonal to the rows of H is in the row space of G. Thus, a codeword generated by G

solves the equation v-H” = 0 . The parity-check equation may be written as follows:

H= I, PT] (3.9)
- 1
100 - 0 poo Poo Pro " Pao
010 - 0 po1 Por P11 " P2
001 -- 0 po2 Po2 P12 "' P22
0006 - 1 po7 Pos P17 ~° P2z

where PT represents the transpose of the matrix P.

When r is read, the decoder computes the following:

s =rHT = (50,5, ... , 87). (3.10)
This equation defines the syndrome, s, of r. Because v-HT =0, r is a valid codeword if
and only if 8 = 0. If 8 # 0 then the word read has been corrupted by errors. If the error
vector e is identical to a codeword then e+v represents a valid code word and rH7 = 0.
This condition is considered an undetectable error. Since there exist 22%-1 nonzero code-
words, there exist the same number of undetectable error patterns. The H” matrix for

our (32,24) block code is shown in appendix A.

The corresponding syndrome digit equations are:

80 = ro+rgtris+rig+raatrotrog (3.11a)
8y = ry+rg+rotriz+roa+ras+ra (3.11b)
23

AN AN

ORI I A N D P L Ay N
- L P

'._..,-J_.-_‘:-r-'q'v{- T e T A e N

'
v
”

W4,
."

SRRRARRS

et 270" .
[y W I |
»

Iy
v

v v v v ..
‘l“‘-" {"{.‘

r
[4
x

Kad i

.

,

‘i‘.\l\

RN
¥

L
-.\\

TERAENSY YT YW Y,
& 'fr'frt'ff

AR
- .. b, > \

[y

Wt
A Ve
-

vy
T

S

Y
. Y

L
.

ALSE S oot e L e

DACEE S i i ot oo

TR W RN VUYL YVI“'.

A
AL
.\I
N
82 = rotrg+rigtriet+ris+ros+ra (3.11c) ™
N o
83 = ra+riotru+riz+rigtrog+ro (3.11d) '
84 = rytry+riatrigtroo+ros+ros (3.11e) i
85 = rs+rig+riz+rig+ro+rogtreg (3.11f) :fij:
86 = re+riz+riatrog+roa+ror+rao (3-11g) -
87 = r7+rig+ristratroaa+rog+ra (3.11h) RS
o
N
Thus, we have computed the syndrome of r which is equal to rH” . But, r = (v+e) ;: 3
so that 8 = (v+e)H” = vHT+e H”T. However, v-HT = 0 so that the following relation- '-:.\
KN
-
. - . . « ‘\
ship is established: s = e H?7. Because of the above relation it is possible to compute e A
A
"
“
from 8. The reader is referred to Chapter 3 of Lin and Costello [Lin83 for the proof. ;-
. . : . o~
The error vector, e, is computed from the matrix in Appendix A. Appendix A also shows A
Y
l\ LY
the 32 ¢; equations. Each e; is a combination of the 8 syndrome digits so that o

e
v’

.‘. .‘
—
PP

€; = 80'81°82°S3'84°85'56°87 , T

where s, represents the boolean AND function and s; may be boolean 1 or 0. For
boolean 1 and §; represents boolean 0. From Eq. 3.8 it follows that v = e+r. Therefore, .

the approximation of the original codeword is obtained by EXCLUSIVE-ORing the word

y fe s

Troa
P
e

read out of memory, r, and the computed error vector, e.

»

S
]
'

)

3.3. PFA Controller

o
RS
. X
The PFA controller chip consists two main architectural parts, the micropro- ‘f;
I '
grammed control unit and the processor unit. The microprogrammed control unit is e
responsible for sequencing through predetermined states for the controller and initiating -
processor actions as well as data flow through the chip. The processor unit performs all ~a
[
RS the data manipulations as well as storing the data and sending signals to the Et
-_'r\' \‘:
\..
24 N

e
.t o
*y

L 4

3
\
N
R
n
h
v
'4
;
b
W

microprogrammed control unit. In order to make the architectural description more
meaningful, it is necessary to discuss the algorithms associated with the PFA controller.

In an application specific processor, the algorithm drives the architecture.

8.3.1. Host Algorithm. The host must operate and communicate with the
PFA controller. Handshaking is kept to a minimum, optimally only an operate signal to
the PFA controller and a done signal from the controller. The host algorithm is shown in
Fig. 3. Iniually. the host must reset the controller. This initializes the storage areas and
resets all counters and addresses lines. Now, the host lowers the operate signal and then
lowers the reset signal. The host can proceed to inspect any storage locations and update
if needed. Specifically, the host must specify the initia] configuration, scale factors, size,
and timeout information. Once the proper data has been set, the operate signal to the

PFA controller is raised. Since the pipeline is set with data entering from one side and

bt o tad ad ad oA AT AT AT ES LU ET RS AR RS AR A

T

AR
DO

l‘..

-y h B e
DS er

W
s s
‘LS

“a_ e
»

cw ®
[
v

oy
[y

....,.ﬁ-
et

P

exiting from the other, there may be two different hosts, an input host and an output ""
e

host. The input host must load the new data into the first memory and send a done sig- 0]
Fo.
K
nal to the PFA controller when all the data is loaded. The output host. at this time, 7]
]
must unload the DFT results from the last memory in the pipeline. From the register ."1
-

g

‘ . . : . <
inspection, the output host knows whether the pipeline output data is valid or not. If the :.r:“
U-‘.l|
. . . . 0
data is not valid. the host ignores the current output data. The next event is for the ~4
~ Y
current DFT to be computed. this is signaled by the done signal from the PFA con- Ex?i
troller. The host may then continue to operate the PFA as long as needed. ;:-::4
. . T S

At any time during the pipeline operation while the PFA is not computing. the host S

)

may change the configuration, change the size of the DFT to be computed, implying a :::‘
-‘.:.
hardware reconfiguration. or change the scale factors of the input data. \‘,’.
N
\d.\

"

25 -

-

7

-

1

RN

e - e e e e s o etetatmTatetat TNt '_,‘.-‘.-‘.-‘-'_-".‘J-‘_.‘J‘..‘_.‘.-‘_\".a‘:::‘

e T e T I A ALV RGN IASER I W R R W

A o
? T
h \- ;f
: .!"- :2
s
1 ‘ F‘
:C =
- RESET =1 ::‘

L
7] 3
) PFA OPERATE =0 -
8 T -
% RESET =0 3
-': q l:-vl‘
~ Load and Inspect Registers -
» (if necessary) -
-) | :-:
: PFA OPERATE = 1 4
s INPUT HOST ¢ - 3 OUTPUT HOST o
.’T j ..::
Load Memory ¢S @ ERROR? -
:] 3
f o Send o]
- | MEMORY DONE Read Memory .
to PFA i 3
— .
N :..:
N PFA DONE? -
PFA OPERATE =0]
1 : ;.’: :
N £
‘;. Figure 3 Host Microcode Flow Chart o :
v’ v
¢ o,
4 N
o 26
D

..l.\. RS AT RAN KR !’l'll LR UATUALR Yot *al Vel el ot ol tatatatloal et alk el * - \J y W R v - v " - \J Y, A\l . i
U

»

» % l_.l:’.- e
G L3S

3.3.2. PFA Controller Algorithm. The high level algorithm for the PFA con-

=7
2
s 3
o
]
« .
o

'
»
B

i N troller is shown in Fig. 4. The first section deals with initializing values and data on the

o]

,

chip during power up. The controller then waits for an operate signal from the host.

St
q‘l') ..n“.. !

While the PFA controller is waiting for the operate signal, the host has access to the

A€
. .

e

internal data stored on the chip. Once the controller has received the operate signal, it

AR

.

o« 3o
e
St

Initialize

¢

-

N,

no

PFA OPERATE =177

;--11')
Yy

BT St
‘e, b

RECONFIGURE? RECONFIGURE

-—
» .' .} bl
L] l'{ﬁ

X
.
q Flip Memories 7Y
*)
X * %,
\ Ny
-, 3
N v
A
3 N
‘I . '.
. WFT CODE N
1]
; .':\
., DONE =1
‘l .‘l~
]
k. e
. RS
; BN
. Figure 4 Controller Microcode Flow Chart -,,\
d 2
. -".‘-/‘L_
. 27 '..
- :_:_.
Cd N
'r\
" \
. r.\-
e T N N e e T N R NN AT A T N L

LY

R R A A AR
N IR ;'Fi_."?:.\J'A\‘.A.I.A§.A!.A'

checks to see if the pipeline must be reconfigured. Reconfiguration is discussed later in
this chapter. The PFA controller then toggles the flip signal sent to the memories. The
controller then communicates with the WFT processors. Once the WFT computations

are done, the PFA sends a done signal to the host.

The WFT interface algorithm is shown in Fig 5 The PFA controller must first
send the scale factors to the WFT, then send the operate signal. and then float the scale
factor lines so that the output scale factors may be returned by the WFT processors The
controller then waits for four done signals. one from the input host and one from each
stage of WFT processors. Once all have finished, the PFA controller latches the new scale
factors from each stage and stores them internally The controller then lowers the WFT
operate signal. The controller looks at information received from the pipehine to deter-
mine if any errors have occurred and updates certain storage locations if need be If an
error has occurred in the active WFT processor. the controller sets up a new

configuration

3.3.3. Microprogrammed Control Unit. The microprogrammed cantrol unit
(MCU) controls the operation of the chip It generates the control signals that operate
the pipeline, communicate with the host. or manipulate the internal data This unit can
be thought of as two separate sections the control memary and the micraprogrammed
sequencer Man82 . The control memory 1s a read only memory (RONY Where words
read one at a time, represent a microinstruction Each micromstruction contains infiorma-
tion needed for the chip to operate The instruction format is broken down nto logical
fields. Each of these fields defines a certain set of operations in the chip These fields can
be horizontally or vertically coded Man82 To achieve a compromise of the benefits and

tradeoffs of the two approaches. the PFA microinstruction contains both

28

O

o

PR A A PRI

Y
AN

»

‘;‘]

-

Yy v w
PR

t

Sosotel LOOCASe 4

<

-
L AR N A

Pl
Tt

AR

'

Drive Scale Factors

Y

WFT OPERATE = 1

Y

Float Scale Factors

4 DONE Signals?

Latch Scale Outputs

y

WFT OPERATE = 0

es
ERROR? 4

no

Update Counters

yes

Set Next Configuration

y

-

Figure 5 WFT Interface Microcode Flow Chart

>

AV

AT RN S PP G L DL N N LA
AR LIS IR PRSI LIS P Py)

<

-

el ek Rl Baf ' 4

The microprogrammed sequencer determines the next address to be read out of the

" ROM. The next address can come from several sources including the microinstruction

itself, an external bus, a stack used for subroutines, or simply be the next address in

sequence. The microprogrammed sequencer determines the address from a number of con-

ditions selected by the microcode instruction.

Figure 6 shows a typical MCU. The control memory contains several main fields.

Two of these fields determine how the next address is selected, the condition and the

branch fields. The condition field selects one of the conditions used {»r branching and

control that exist in the chip. The branch field selects either T or F for an unconditional

branch or call, or positive or negative sense of the selected condition. The branch

External

SRR 10 B

Logic

—® Input [™]

4:1 Mux - Stack

—~ w0
w03 —
| 1]

32

1 Mux

| B

Incrementer

Y

Control Memory

Condition .)
Select Bsranch Micro Address Field

elect § Operations

Figure 6

Microprogrammed Control Unit

DR RN
i
T

A T RS,

30

- Ly

e .-“‘.4 - '...‘-..{-: - '..".-"f-.'- o .*-"' "-.." Ty "‘. .".:r:'.\-(-.'.-.‘- - '."1" "

» w %Y
. .

2 v o2 e VW
-‘J"c‘c‘ .

Yy

|

&I Ll

e AL L
L&

4

.

N
» ar

. :m— - -‘I\ " ’..“v. ."

«’N‘l'l

V‘S"fv]

Py
a

P

v -

.
[

AP e IR AR

-

address may come from three diflerent places, the instruction itself, the stack, or an
external source. The stack is used as a temporary storage location in the event of subrou-
tine call for the return address. When a call is executed, the address of the next instruc-
tion is pushed onto the top of the stack. On a return, the branch address is popped off
the stack and selected as the next address. The MCU also contains an incrementer for

sequential addressing.

8.3.4. Processor Unit. The processor unit contains the internal storage for
the chip and the circuitry necessary to manipulate the data. The PFA controller architec-
ture is organized around a bus structure and is shown in Fig. 7. The data is stored in a
set of registers that can be loaded or read. The registers are loaded through the C bus or
from an XROM field. The particular register is selected via a decoder. The data may be
read out on either the A bus or the B bus. The A bus and the B bus are fed into the
arithmetic logic unit (ALU). The ALU can perform 15 functions on the data and set con-
dition bits accordingly. For a detailed description of the ALU, the reader is referred to

the thesis of Capt. David Gallagher [Gal87].

8.3.6. Registers. The registers store the data for the controller. There are 28
registers in the controller. Seven of the registers have special purposes requiring such
options as being loaded from sources other than the load bus, driving the contents to
destinations other than the data busses, and shifting. The following defines the registers

used in the PFA controller and any special requirements:

ECCI1-ECC3, Error Control Corrected registers.

These three registers are used as counters for the number of Error Control Code

31

o

f TS e e T 'S

A

rLlL
.l'l'n.

celL s

*

&

‘y

EXARR

’

v

1

P NN,

[e Tl i B

faiafat de ia¥oRe e tadie " v Al ala T e o

RPN

)
,-
N
d'..-
o
.
~
C bus select o
A bus select :
A Bus B Bus B bus select Fa
———— ro
r
. A select I
Register n ‘ &
— C select B select
. A select
Register n-1
C select B select
®
[
[]
] A select
Register 3
g C select B select
. A select
Register 2
C select B select
. A select
Register 1
C select B select

Arithmetic Logic Unit
C Bus (ALL)

(from XROM

Figure 7 Processor Unit

corrected from the first three memories. These registers can be used for fault moni-

toring.
ECU1-ECUS3, Error Control Uncorrected registers. ‘:
These three registers are used as counters for the Error Control Code uncorrected s
S
from the first three memories. These registers can also be used for fault monitoring. A9
)
. . g'
PE1-PE3, Parity Error registers. ;C
Ny
) . Ny
These three registers are used as counters for the number of Parity Errors signaled :?‘
Py
If‘

by each stage of the pipeline.

32

. e e e P B T T S S T S S IS
o et e Tu LR et et e S .

L R . R T S
R R S ‘.‘;-J'.“-'._.."_ -f.“-'_._‘-.__-_:-' PR PP R D BRSO W LT P B, LBy S, W, S

Lol 0 i e A e RNl S i S RV AT Bie U Ao iite ale Bl AUCAtatale AL ato ol ol af "l Yol Aai Sl Sl tal ‘all Nl "ol el Vel tol Sad g\l o8 sl a8 "af el Crg "ot el tot ‘ol ‘Al caf ad ol g Reg Sof

S

-~

P

NS

::'_-.
.
o~ WD11-WD13,WD21-WD23, WD31-WD33, Watch Dog registers e
l~ > '-".
LV)

These nine registers are used as counters for the numbsr of times the WFT proces-

sor was assigned as having a fault.

TSR, Temporary Scale Register. .

This register is used to store the scale factors to be given to each stage of the pipe-

line. Nine of the bits (3 sets of 3) must be able to be sent to the WFT processors -

The register must also be able to receive the scale factors from the WFT processors)

and then shift those by 5 bit for the next stage of the pipeline.

L A
AT

PSR. Permanent Scale Register.

This register 1s used to store the accumulating scale factors for each of the three N

LY

problems in the pipeline. This register must be able to transfer the problem’s scale

CArL AL

factors to the respective problem’s Problem Status register. This register must also

" "' ,.' -.‘ 5 .y

‘.. be able to shift the scale factor bit by 5 positions

PS1-PS3. Problem Status register.

ARG

These three registers store information about each of the three problems in the

pipehine. They store the current accumulated scale factor, and whether there was a N
N

fault due to an active error, a memory uncorrectable error. or a parity error and

wnich stage of the pipeline the error occurred. The register also contains a bit signi-

fyving whether the data was validated by the processor finishing

yva e

C'CR. Current Configuration Register and NCR, Next Configuration Register. R
[
:,.
These two registers store the current and next configurations respectively. e
N
TOUT, Timeout Register. N

v

.
[SEREREREN

This register contains a time out value to determine whether a pipeline catastrophic

pipeline failure has occurred, such as a processor not finishing.

33

-
()
-
-
-
-
-
-
g
J
>
>
-
4
-
-
-
-«
-
v
.
-
-
-
[&
-

LA
»

. 'j..n

i
)
.ﬂ,.
L TEMP, Temporary register. :
o w3
v This register is used as a scratch pad for many of the data manipulations. ."
8.8.6. Microcode Word Format. Now that all of the major architectural
components have been identified, the fields in the word format can be identified. Figure 8 :
shows the architecture of the PFA controiler. Each field in the microcode will control the ’E:
operation of an architectural block, peripheral circuit, or direct output. The first field
controls the addresses sequencer for the XROM. It determines where the next address ori- .;'{
ginates The second field specifies the operation of the ALU. The third field is used to ::‘-
indicate an insertion of the literal field onto the destination register bus. This is used to .':
N
load a constant from the microword into a register. The fourth. fifth. and sixth fields .}‘:
select the two source registers and the destination register, respectively, for the ALU. The -
seventh field is horizontally coded and specifies certain control signals for the chip. The
‘. eighth field signals the WFT processors to operate. The ninth field signals the host that
the DFT is done. Finally, the tenth field contains the address of the branch or a constant
to be inserted onto the destination bus. The bit fields will be described in Chapter 4.
3.3.7. Pipeline Fault Tolerance. The pipeline is set up for fault tolerance
using triple redundancy and voting for the WFT processors [Hed86,. In each stage, one of
the three processors is considered to be active, the other two are considered to be in
watchdog mode. When a processor operates in watchdog mode, it receives the same data
as the active processor, computes the same transform and compares its results with the
results of the active at the output pads without driving the pipeline data bus. If there is
a discrepancy, a WatchDog error bit is signaled to the PFA controller. The PFA con-
troller looks at the three WatchDog error bits from each of the processors in each stage
e 34 -
N
'
KN
IR, L e T e e e N L e ~.~'_-‘.:~:-‘-;~;-;.;-;-;~;-;-.-_-.-j-.:-','-:-‘-:-i-'-;-.-‘_*.-:-,-'-,'-‘—*‘.-:;‘1

Apad b b Y Yo b Y G0 000 2.8 ah g u pol At S et et batotat bai uatata ttet anat ol 7 ey Yy 0
I
\ : .';--."
d ‘:.:l\‘
\
h'
N
.~'
: Other
' Circuitry
HOST «——— A
. Interface
: TOUT
‘ 1EMP R XROM
' EUI1-3 e
\ EC1-3 Hna
PE1-3 s
.. t
‘. State ‘Scale WD11-33 e
S Bus CCR r
3 NCR s
: ELR 1
TSR e
) PSR ¢
4 PS1-3
: —— Control Sequencer
, -
) ALU
External _j
' Conditions
' Figure 8 PFA Controller Architecture
| 35
R R R R S R R A

MU Y
. Ve v 5‘ h]

)

RO

l-{

t
W
v

A

o h e Y b

L0 A I

RS Tl N Rl B ¥

e N A

\.'c. L\’ " "

PRI _--J-A\A':-\.__-...L_lm NN,

and uses a voting strategy to assign the error, if any one of the WatchDng error bit is

raised. The voting strategy is as follows:

Table 1: Voting Strategy

Active | Watchdogl | Watchdog? Result

0 0 0 No Error Assigned

0 0 Error Assigned to Watchdog?2
0 1 0 Error Assigned to Watchdogl
0 1 1 Error Assigned to Active

1 0 0 Error Assigned to Active

1 0 1 Error Assigned to Watchdogl
1 1 0 Error Assigned to Watchdog2
1 1 1 No Error Assigned

The (1,X,X) cases are conditions that are treated as normal because the possibility of the
active signaling a watchdog error is too small to warrant the amount of microcode and
hardware necessary for handling this condition. The conditions to cause a (1,X,X) case
would be for the active processor to signal that it had a watchdog error. This can only
happen when the WFT has suffered a major error, the pipeline has some kind of bus
error in which the line is set high, or a transient fault. If the active processor signals a
watchdog error and the others do not, this error will be assigned to the active as it
should be. The problem arises when the the active signals as watchdog error and one
watchdog also signals an error. In this case, the error will be assigned to the watchdog
processor that did not signal the error. It is difficult to determine what was the true
cause of the error was. The error could be in the active or either watchdog processor and
this voting strategy will not find the fault. In the event that all three signal a watchdog
error, no error is assigned. The probability of this occurring is extremely small except in
a high radiation zone. And, should it occur, the data would probably be corrupted

enough so that the next WFT in the pipeline would most likely detect a parity error. If it

36

RO AT AT AN N T T :. """J‘""I".'\!‘."'\-\J‘\.ﬁ\'\.‘."" NN N

" A, 'l..‘,
A

LLALANS,
A X

o S

. -
2.

v

e

'

-/

AT

sfate
P

T T)
AR

.'.‘

"’./,’..'.

LT AR
'-I_

b9

LRI

PR
VNN

"
»

’././'.-', :

s
O

1

o«
o

i

P A

R B
LR 4

-
P

.
o

e
AA_al)

’
> w1 Y

- -
l‘-". -rd'u

< .
) '
> R
NI is the last stage in the pipeline the data will be bad with no error reported. ")
\' \-:'--P .
) When the PFA controller executes the code for error recording, it looks at the -
- 2
- . : ‘ . . .
3 watchdog errors and determines if one of the three active processors has errored, if so it .
L rY
' . . r
' sets up the Next Configuration Register to make the next active processor to be the A
P current watchdog with the smallest error count. If the two watchdogs have the same :
- =~
- number of errors, it selects the processor with the lowest number name (ie. WDil < Ky
- ’\
. "
- WDi2 < WDi3; where 1 represents the column). The names assigned to the processors -
- are shown in Fig. 9. :
~- "
N. --
A9 -
A~ ;
> .
~ R
. S
: %
N he
.
: 7
(e 4
nd . ey
" y
) =
--‘ R
S ~
- o~
, NS
<. -
: N
- -
¢ .
5 ~
< S
e ,
- o
- -
'~ Figure 9 Processor Names "_
) -
b 5
Lo -
'l._ -..-. ‘- '
', -'-4' -
- 37 g
-)
r -
. .
Il '.\
7/, "
. R
4'_{./_\'-

A A AN DRSS TSRS DA

“»

" ‘\

o ‘4
L™ :’
o -
) Ny
: “
AL CHAPTER 4
< '4""'."’ L)
{“ 3
. Computer Aided Design Environment Tools -3
¢ 4.1. Overview 3
: The computer aided design (CAD) environment has a great impact on the quality :::
n -
’ and timeliness of what can be produced. A well-integrated set of tools from the design *
:‘,: stage through the implementation stage to the simulation stage allows easier transitions ot
::. between stages and quicker execution. AFIT currently supports a limited number of o
| ‘J‘
A
' tools for the design and implementation phases. In the following sections, the methodol-
> ogy for designing a VLSI chip within the AFIT CAD environment is discussed, descrip- ':‘_
:7 tions of the tools needed are given, and a description and the development of a CAD tool :.-'
- ‘. created as a result of this thesis effort. ’
N 4.2. Design Methodology f
e »
: The first step in producing a VLSI chip to decide what problem to solve. A detailed
o~ problem specification limits the scope of what is to be done and thus limits the amount i',:
o o
:-.' of extra design that might not be needed. The next step is to develop an architectural X
. - description from the problem specification. For the design parts of this thesis effort, the .

architectural descriptions are extremely different. The memory chip architecture supports

a data flow architecture and the PFA controller chip supports a finite state machine -

P
| i AN
.

[architecture. Once the architecture has been described, the logic and circuit design follow.

» , :

: At this stage, the interfaces between the macrocells are defined as well as the incorpora-

* -

X tion of testiblility. The next step is the VLSI layout. Once the layout is complete, the .
R

" LN

PSS

- 38

-

S e
:- ,-:‘
: "';..r;-’ '-r;,‘ '-;'\';1";{_;-' T ‘.r_;f_‘f\".-_::_:_;m.:\‘-_:r‘::_.-.;a-;.- \‘:_:. ‘:-'- _:.'- o ,-\-_- :.- - :_ _‘- ERFIR LI N ~_ -.‘.\. \' KRR

2 . - L - = 1% L LS

o N

~

%
& .
‘&4 N

', X

3 e, simulation phase begins. Simulation and verification start at the lowest level of design .':

P .

-"\J’ a1
and proceed up the hierarchy. When discrepancies are noted between the simulation and

::j the descriptions, the chip design loops back to various levels depending on where the :.-

’)
S:: discrepancy occurred. Once the chip has met the simulation requirements, it is ready for "
; _ fabrication. j
. .
“ 4.2.1. AFIT CAD Tools. AFIT currently supports the CAD environment

A near the lower design levels. These tools currently support VLSI layout and switch-level 4
:: simulation. In addition to the software tools, AFIT has considerable computing power

“~

~

N and other hardware support for CAD. The hardware used in this thesis eflort included:

- K

& 1. Two ELXSI 6400s,2-CPU(12MIP ,6MIP) running UNIX 4.2BSD
:‘: 3. SUN2 and SUN3 Workstations running UNIX 4.3BSD R
" 4. Two VAX 11-785s running UNIX 4.3BSD :
.- 5. A VAX 11/785 running VMS 4.5 :
::: 6. A Versatec Plotter, and an assortment of printers. .

(e "
- The current mainstay of the AFIT VLSI CAD toolset is Magic {Ost86]. Magic is an
\ interactive VLSI layout tool that allows creation and modification of VLSI circuits using e
Manhattan circuit design geometries. For this thesis effort, Magic was run primarily on a

>' SUN 3 because of the window environment and interactive speed for cell editing. Magic y
' was run on the ELXSI 6400 when executing several features of Magic that are computa- -

- -

tionally intensive. This included the design rule checking of a silicon compiled XROM

- 5

~' .
o (described later) and hierarchal cell "flattening” of the same XROM. The XROM contains v
:.': thousands of cells and was found to be easier. and faster, to work with the XROM ::
~

X "flattened.”

Mextra [Fit83, was used to translate from the Cal-Tech Intermediate Form (CIF) :::
o to a switch-level format suitable for other simulations. Mextra takes the "cif" file, which .
SRR 3
-’ 39 rY
._: N
5 p

o1 7

R R A R AT RN T I S O A R N T AT

is a mask level description of the circuit produced by Magic, and makes a "sim" file
which is a listing of all the transistors in the circuit and associated capacitances In addi-
tion to the translation, Mextra outputs several other tiles. These include the alias file,
the log file, and the nodes file. The alias file is very useful in finding nodes that are
"shorted” together that should not be. The log file gives information about the number of
occurrences of labels that are not connected together by stating that a certain label has
X number of occurrences. The file provides information that usually lead to finding
unwanted "open circuits" between nodes. Finally, the nodes file is a list of the node
numbers assigned by Mextra and their location on the chip. This is useful reference when

running other tools which refer to node numbers.

Cstat, a CMOS version of stat [Ter86], was run on the output of Mextra. Cstat
provides information about nodes that cannot be affected by the inputs, cannot affect the
outputs, and nodes that cannot be set to either logic-1 or logic-0. This tool is useful for
finding nodes that are not connected or shorted to either Vdd(logic-1) or GND(logic-0).
By the time the circuit is ready for fabrication, every node, if any, signaled by Cstat

should be accounted for.

Nofeed and Fixrom are two tools needed to allow Esim, described below, to work
properly. Nofeed scans the Mextra output to identify and remove the feedback loops
from Master-Slave Fiip-Flops (MSFFs) making them dynamic. A more complete discus-
sion of the operation of the MSFF will be given in Chapter 5. Fixrom modifies two por-
tions of the XROM for Esim compatibility. The first modification is to replace the shared
drain 1in the XROM storage array and the second is to replace an inverter in the XROM
sense amplifier. A thorough discussion of the operation of the XROM will be given in

Chapter 5.

40

RS ."-_ <, Y
n A AL '~

Bl

e N

W

YN N

.

‘NS

....
]
AN
.

[s ."." ,l'
)

.‘. “ S .." ,

T
'y

.l \‘l

pip PP
[P

,
1.-
»

... v_.,-,.-
.'r‘.“x EIN
¥ cal’l /l L

o

Esim [Ter86], is an event-driven switch simulator for nMOS or CMOS transistor
circuits. Esim is used to exercise the switch level description from FIXROM. This tool
was used tc verify the logic created from the Magic layout for correct operation. Simula-
tion can be preformed as if the chip is under test by stimulating only the inputs and
observing only the outputs, or as a diagnostic tool by stimulating any node in the circuit
and observing any node in the circuit. Once a circuit performs as expected under Esim. it

1s considered ready for fabrication.

Two tools developed at AFIT were used to create the XROM used in the control
section. The first tool was the Generic Microcode Assembler Tool (GMAT). GMAT was
developed as part of this thesis effort and is described in the following section. The
second tool was an optimizing XROM silicon compiler. This tool, given a list of integer
values describing the binary contents of the ROM, will minimize the transistor count and

‘.' the number of drains. The compiler will also generate the Magic layout for the optimized
ROM including the word selectors, column drivers, sense amplifiers, precharge circuitry.

and cell arrays

4.2.2. Generic Microcode Assembler Tool (GMAT). When designing micro-
code. it is desirable to describe the code in a structured language representation using
mnemonics. Describing microcode in these terms is helpful for two reasons: first, the
code 1s more readable and second. the code is less prone to errors. These factors
motivate the need for a microcode assembler. The CAD environment needs tools that can

be applied to different projects so the assembler must be generic.

To achieve the above needs. a generic microcode assembler tool was developed This
tool takes a microcode word format description and mnemonic translation file and builds
a microcode assembler for that particular microcode format The resulting assembler

41

P A AN s

R R I N S R R G P T AR L SR A AR S S G GRSy

reads in the translation file and the microcode to produce outputs that are compatible
with other CAD tools and are useful in debugging the integration of the microcode into
chip designs. Specifically, it generates an address stream used by the optimizing XROM

compiler, a VHDL description of the ROM, a reference file, and a reverse assembly file

The assembler supports several important programming features including labels.
literals, and default fields. By supporting the use of labels, jump fields may be specified
by a label rather than an absolute address that must be put into the microcode by hand
Supporting literals is useful when loading a location with a specified value from the
microinstruction. Supporting default values greatly improves code readabihty The

microinstruction need only specify those fields where some action is to take place

The assembler also supports several other features that are useful in the design pro-

cess. The assembler can output a file that can be fed into the XROM compiler This elim-

". inates a step previously needed and subject to human error The assembler also outputs
a reference file that shows the instruction and its translation. This i1s particularly helpful

in debugging the XROM connections in the chip

4.2.3. GMAT Assembler. The assembler created by GMAT 1s essentially a
two-pass assembler as described by Beck '‘Bec® On the first pass unsed parts are
stripped and branch labels are stored for access on the second pass As the assembler
scans the input file on the first pass 1t writes nut an intermediate “stripped file” and a

listing file containing the input file and assiciated hine numbers

On the second pass the translation s accomphshed First the assembler reads the

translation file 1nto anternal data structures The translatin hle created by the yser

defines the microword format the fields and the values they represent The assemibler

R
Bt)
24
INION.

o

ATYWRTWE,
’

1"%!.'.’1’

now reads the "stripped” microprogram and uses the translation tables for the symbol

substitution. When the assembler parses a line, it starts with the first symbol encoun-

»
L]

J
'.I
Y %

tered and searches through the list of names in the first field table. If the symbol is

“n :. "l -
o

encountered, it makes the translation and outputs the result to a data file then gets the

oy

next symbol If a symbol is not found. the assembler puts in the default value for the

B '{'1-
[NONLS

s, & -

field and gets the next symbol This way the writer need not specify all fields in the

XA

microcode This enhances readability and decreases the chances of leaving a field out if

LY LN
<
h

they all must be declared

A label 1s treated like any other field When the label is ercountered in the word,
the assembler puts in the value of the line number at which the label appeared in the
hr-t pass [t also translates the line number to a 10 representation with the same
number of bits as the field where 1t 1s being placed. This allows the microcode to use
labels for the branch fields instead of having to figure out the absolute location of the

branch and manually insert 1t into the microcode word The assembler also allyws inser-

tien of literals into the translation When a pound sign is encountered. the field allowing

Iterals will be hlled with exactly what follows the pound sign This allows constants to

)
e

sy *a e

PR AP

be used an the microcode I the assembler does not find a symbol after parsing the entire

o twe condite.ns may have occurred First. the symbol could have been a "nop™. or

Y,

wo -l the svmbal s an error The "nop”™ represents a "no operation” instruction The
assernhler checks for a “nop” at this paint If the symbol 1 not a "nop™ then 1t reports

this bark toothe user as an error and indicates the svmbol that was not found

After the second pass the assembler has created a data file that holds the transla-

tion for the entire mucrocode The assembler now creates a reference file for the user

LI]

, N W Wy,

.

&
=
P
¢
®
rle
4":-(
w3
= This file lists the original instruction and following it, the translation by fields. This e
;.‘\./ i\"'
o) ‘ - . .]
y reference file is extremely useful in debugging the microcode and the chip once the ROM .
. 24
p is in place. 2
4 ",
EX—"
The remaining features of the assembler are invoked as a command line switch “3"-1‘
_,.I A
when running the assembler. The user may generate a reverse compile, an XROM address E..
b 27
: file. or a VHDL description of the ROM. The reverse compile takes the file of translated A
) o
symbols and reverse assembles it. If the code is correct, the reverse compile will produce ".-;':.
»
the original microcode with labels removed and line numbers inserted. The assembler RS
S
may also generate the XROM addresses. In this section, the assembler transforms the :::‘:-"
h..\
] translated file into a form compatible with the XROM optimizing compiler. The assem- b,
]
bler separates the word into four parts and computes the integer value of the resulting r:’
b |
o
binary number. These four integers are then put into the XROM addresses file. The o5
6' assembler does this for all words in the microcode. The final option currently supported ;""
-
1s a VHDL description of the ROM. The assembler generates a VHDL package that holds ;‘_:f-
S
the ROM and defines how the XROM is interfaced. The interface allows words to be read ;‘.—
W
Rl
from the ROM. The ROM is represented as an array of bit strings. »
4.2.3.1. Translation File The translation file contains the microcode word ::.-::j:
format and the field definitions, as well as their translation. The following is a represen- S
»
tation section of the translation file used for the PFA controller: ﬁ'_:j:
BR_SEL ALU LOAD_FD REG REG REG SPEC_FUNCT WFTOP PFADONE NXT_ADDR # . _
Y
BR_SEL 000000000 |
RET 000000001 :._:-_
CALL ~ 000000010 R
IMP 00000001 1 :.
CALLCR 000010110 I
JoPE3 11111111 ;'*.,
'-'_*.'F’ -._\' !
44 Y
R
-._\
-.’\
[] |
s
AT
A
‘II-
SN '\-"-""._f\u' L d'..n‘ v'.'-'_-u".q'_.h‘ Cal -(_

ALU 0000 ;’,‘
AND 0010 b
XOR 0011)
OR 0100 -

AN A
.l

LOAD_FD Y "
LOAD 1 -
"
e
REG 00000 ':‘
ECCC2 00010 oy
‘W
'

-

hY

The first line, it must be the first line, contains the microword format ended with a

semi-colon. The end-of-line delimiter is used in case a format description is longer that

one line. Fields in the microword format must appear below in the translation file. If a

'# follows a field in the format description, this field might contain a literal. If a *:" fol-

lows a field, this field might contain a label. In the above example, the NXT_ADDR field

contains both. For the PFA controller this field is the jump field as well as the literal

field.

The field definitions that follow the format description are separated by one blank

line and end with the last field. The first line of a field definition consists of the field

name followed by its default value. Blank spaces are used to separate the values. not

tabs. The remaining lines in a field definition specify the sub fields and their translation.

In the above example, the REG field default value is 0000 and the value of register

ECCC1 is 0001. When the assembler encounters the symbol ECCCI1, it will place 0001 in

the translated file.

- g L e U U S
U A PO RPN A Tt T - ol 20 E o AT)
N ’.‘:‘::*iy:*ih{.ﬁ .A‘;'h.:..‘:":ﬂ!:_hi‘ 'ihﬁ*ik.‘hh‘h‘th At -\i‘l‘-

]

P by
4« n ot 4

Bt b8 ol B SV S i 3

W

AT
FRTNN §

)I}'—.‘ Y]

P

STPAEIT R

-,-.a.-." NS R A0

4.2.4. PREG Operation. PREG is the interface to the user's microcode.
PREG reads the microword format and scans the translation file to build those sections
of code for the assembler that are user specific. The code segments generated are then

written to files that are added into the assembler when it is compiled.

PREG first scans the translation file for the microword format and which fields may
contain labels or literals. It then scans the translation file and records the names of the
fields and the lengths of the bit translation fields. The bit lengths are needed when mak-
ing the code that generates the reference file where the translated microinstruction fields
are separated by a space for readability. The length of the label field is also needed so
the translation from the line number to the binary representation of the proper bit

length can be done.

After having scanned the translation file, PREG builds the user-specific code. The
first file created, assem.k, is a header file containing definitions needed to implement the
code. These definitions include the word length in bits, the label field length in bits,
structures for the fields found in the translation file, and defines integers to record the
number of subfields for each field definition. Because the assembler dynamically assigns
these value when it reads the translation file, the number of subfields for each field may

change without needing to rerun PREG.

The next file created by PREG is the assem.tailored file. This contains the routines
to read the translations file, transiate the microcode, make the reference file, and preform
the reverse assembly. The routine to read the translation file reads the fields in the order
found when PREG scanned the translation file. The routine to translate the microcode
uses the microword format and the names included in the translation file The reference

file routine uses the bit lengths to separate the fields when the reference file is created

46

- -

.’-"-’l’-

220,

ORI

12

el

R

"
1 4

&

I)
R

The reverse assembly routine parses the translated file into fields and then translates the

=

n'

-,
.

fields backwards into mnemonics, except for the jump field which is replaced with a line

number.

To make a tailored assembler, the user runs gmat a shell script that runs PREG

and compiles the resultant assembler. Appendix B shows the gmat shell script. Appendix

C shows the code for PREG. Appendix D shows the two files created when GMAT was

run for the PFA controller. Appendix E shows the code for the assembler skeleton.

translation file for the PFA controller is shown in Appendix F.

AT AT A A I e LN

A R W, SO R R O PO i ad o

Al by

o)

L4

Yy OO

R AN

RAR

s

Oy

.t

D
-

Ry

00 btk tay

AP S I

g ety RSN Aotag at. 2. % 44 "l - o

CHAPTER 5

VLSI Design

5.1. Design Techniques

Before describing the the VLSI implementation, it is necessary to explain several
different VLSI design techniques used. These are 2-phase clocking, design with transmis-

sion gates (t-gates), and master-slave flip-flops (MSFFs).

Two-phase clocking employs the use of two non-overlapping clocks to synchronize
operations on the chip. {Wes85'. A timing diagram is shown in Fig. 10. The two clocks,
PQI1 and PQIl, each have separate operations. The inputs to all logic units that are syn-
chronized with the clocks become valid on the rising edge of PQI, falling edge of
precharge if precharging is used, starting all computations. The outputs are latched on
the falling edge of PQ2. ending all computations. Two-phase clocking is useful for syn-
chronization in the circuit. It also prevents some signals from racing through flip-flops

destroying the intended sequencing.

PQ1 ﬁ l I
PQ2 | 1

PRECHARGE l l

Useful Computation Time _

Figure 10 2-Phase Clocking Timing Diagram

48

P A A P R N A N A I RN R N R PN AR AR PN R

.f -" l' I' { '.

P ss SR VLN B

r s

T’

.y

15 N s
»

L T L e

o o B S T

AP

s ¢ o

P AR AR

RN R

-

£
f_‘-'

AR S
"_. b "lﬂ.l..

)
)

l.,“

L

% .’1 ..-.{

I. .’-)- -v' ’l',l-"—

w

. .’.".7‘.: s, '

-
.

.

oAy
.

A A

‘%

T

A

T 0 B

.
.
. m

i}
e
.

The second design style is the use of transmission-gates (t-gates). T-gates are the
CMOS switch, the equivalent to pass transistor in nMOS logic. A t-gate is shown in
Fig. 11(a). The transmission gate is made up of a p-transistor and an n-transistor in
parallel. Both types of transistors are because a p-transistor will not pass a strong logic-
0, that is, it passes no lower then approximately 1.7v, and a n-transistor will not pass a
strong logic-1, that is, it passes no higher than approximately 3.3v. By using both, a
good switch with both a strong logic-1 and logic-0 is designed. The control for the t-gate
is supplied to the n-transistor and its complement is supplied to the p-transistor so that
both transistors are on when control is high on the n-transistor and its complement is
low on the p-transistor. When using the t-gate symbol, only the signal to the n-transistor
is shown in Fig. 11(b). The complemented input to the p-transistor is still needed, but

not shown.

A MSFF is shown in Fig. 12. The MSFF is the basic storage unit. The input is
latched on the falling edge of PQ2 and remains in the first feedback loop until the rising

edge of PQI1, at which time it moves into the storage area on the right where it is latched

! Control

In I I Out

I Control
Control

(a) Transmission Gate (b) Transmission Gate Symbol

In Out

Figure 11 Transmission gate

49

T I T I T U NN T VLI VS [P B I L T IS SR RO I T SR TNE G N S eSS SR S oSN ol S Pt
J,_,,.J_\._’ (_'- 4(_“,.{.,\5\ x'\-\ \ ‘_ - .__\\ NP N Y SRR

o

OB\ Fia AT Aa d1a 1 o' al a0t e Sl o e 8 e A Al Bl el 8 b il ab o ot il St A’ Rt d g

B

"

| 'R

.

NN e

I‘ﬂ.l"‘.‘_."-"'

2

»

S A

<

a

A

L]

RS

. S
. [yl e
p

.
" *

e
LAY

ARHLRENA

R Do Do

PQ2 PQ1

Figure 12 MSFF Description

on the falling edge of PQl. The feedback loops keep the value of the nodes as long as
power is supplied to the circuit or until a new value is loaded. When PQ]I rises, the value

1s output to the circuitry using the stored signal.

5.2. Memory Chip

The memory chip includes the storage cells for the bits, the encoding circuitry for
the error correcting, the decoding circuitry for the error correcting, as well as other cir-
cuits for bitline control, word selection, bitline detection, and one-shot generation. Fig-

ure 13 shows the chip architecture including all the major components.

5.2.1. Memory Cell. The memory cell is based on a one transistor cell design
shown in Fig. 14(a). The one-transistor design was chosen to increase the density of the
memory. The cifplot of the memory cell is shown in Fig. 14(b). Each memory cell actu-
ally holds two bits, one associated with the wordline above and the other with the word-
line below. This was done for several reasons including modularity, density, and capaci-
tance reduction. Modularity is obtained by designing the cell to be arrayed in any direc-

tion. The density is obtained because the cell is so tightly packed. The final reason, and

50

R A S A I L O Ao T Rt T T P T O Ny

PY W T ¥,

XN R XN

s W 2 I T I

'As

l‘l'l'!‘\

P
{.T’.:’-’- L4

‘.

“ 2

«
s
v,

gy

> 1 s
P
.

A

Va6
5 _v_ 2

AP

L
o
.

.l I

77
-

o
a

v

s ¥ v
A
o % r T e

o
4

, S

TR)

op

',‘-'.\’,%:_'-','f,' :

‘l ‘ol } .l.

PN

P/

o R

' g Y

AL VLA L Wt SR 9

oLt

P Aw B B LN A B

-'nlu'-'\‘)

g K}
O R N

.
«tats 8 2w

248
Inputs
Encoding Circuitry
| Input Multiplexer]
Bitline Logic Bitline 1.0gic
D D|D D
e e | e e
c c|¢c c
3 Left RAM 3l Right RAM d
e e | e e
r r|r r
S s | s S
Sense Amplifiers Sense Amplifiers
B Output Multiplexer |
L Outputs
Qe
Figure 13 Memory Chip Architecture
7
51
T A NI S R R A O A A Yty

“r e Y W

rid

%

L/

“

[y

. s
LA NS S

o

PR
DR

SRR RN

R

[R gl gt o
LAY

"N
v l.'{-".{s,"',',

Gl S

S

PR RN

‘s

v

%

"
-

.
’

-
P

»

wis'se

»

2

v

2’2

SRSV A SN

87 I By B N)

(£ 5 0 04

i, 0
$5 50

7l

TR W A

Y “r

)

)

N3

-

£

Y

4%

3
o o

LN

Bitline

Wordline

Storage Node

Y,

Py I yrd” 547 Frvesin Srrrr ST s

Figure 14 One-Transistor Memory Cell Logic and Cifplot

the most important, is the reduction of the bitline capacitance. The sources of all the
memory storage cell transistors are attached to the bitline. If transistor source sharing

was not used, there would n sources on the bitline where n is the number of words in the
. . . n .
array. In this implementation, there are only ry sources. The reason for keeping the

capacitance of the bitline as small as possible is related to reading a memory value.
Reading is based on charge sharing between the bitline and the storage node. The word-
lines run horizontally across the cell in polysilicon and second metal. The polysilicon and

the second metal are shunted together at both sides of the array to decrease the effective

52

‘.' ‘.‘ o
8

»

TNy
AL P

l'ff{'

IR R

LRI R IS
L IR

Py
S e e

NNy

LA
AN IR

.
.

P'xd
5 5%

N
)
)

.

Ty

v e
e e

.
Sl

F 4

LR Db] 'Rl dd
‘i;v‘i;‘,"

Y
N

it s WV g

"
a0

~

- e - e -
'll|,"

R I B A

AN LSl

e

e

AR
- -
o

7

- w w -
Rl AN

R0 At i Al 1A Wy p pie 0%a 8% 1% %0 0'a % Ve e Al

resistance of the polysilicon thereby decreasing the access time. The bitlines run vertically
in first metal. The actual memory storage area is n diffusion area connected to the drain
of the pass transistor on the bitline. A grounded polysilicon plate sits above the area of
n-diffusion. The charge for the cell is stored on the capacitor created between the polysili-
con and the n-diffusion. When the wordline is raised. the precharged bitline will either
maintain its value because the charge stored on the capacitor was high and no charge
sharing takes place, or experience a decrease in charge because the value on the polysili-
con plate was low and charge sharing between the bitline and the cell takes place. The
decrease in charge will be less than 0.02 volts because the capacitance on the bitline is so

much greater then the capacitance of the memory cell.

5.2.2. Bitline Control. The bitline is pulled up and down for reading and
writing. Figure 15 shows the circuitry for the bitline control. The bitline 1s precharged
before every read and before writing a logic-1, and pulled down before and during writ-

ing a logic-0. The three signals that determine the state of the bitline are

precharge + WRenablee bit I

Wordline

Storage Node

A

Bitline l |
I
WRenable e bit ——-| E\

Figure 15 Bitline Control Circuitry

53

b
L
I
R
.\
'\
"\
.

. . et e e e e T e e T e T S . .
W BIPL A W SR SR LI P YR DY WD SRy v R, D VU I SR < P, S

Write_enable(Left from PFA), precharge (PQl from WFT), and bit (data to be written

from WFT). These three signals control the bitline_precharge (active low) and

bitline_pulldown. The above is summarized below:

Table 2: Bitline Control Logic

WRenable | precharge | bit | bitline_precharge | bitline_pulldown commment

0 0 X 0 0 precharge before
read

0 1 X 1 Q read

1 0 0 1 1 pull dn before write 0

1 0 1 0 0 precharge before write 1

1 1 0 1 1 pull dn during write 0

I 1 1 1 0 write 1

5.2.3. Sense Amplifiers. The sense amplifier design is shown in Fig. 16. The
sense amplifier 1s used to detect a shght drop in the bithne voltage if the memory cell
stored a logic-0. The sense amplifier is based on a differential voltage amplifier. A dummy

voltage reference 1s used for the comparison. The dummy bitline is connected to a

Vdd

al] by
= — | >o Out
Bitline —1 E :] '— Dummy Bitline

et —] [;'L

~ GND

Figure 16 Sense Amplifier

54

I N T T . - R
B A - - . PSR .

.
o

oAl
PRI S, ST

RS
SN

€ o5
SARER
P 2 3 AP B

.i 'l LR

PN PRV

e
LN
P

i

AL S
2

rSL

Al

e
LAY

‘f’f’
PR

Ly

‘l .'

s 4y

'.{‘, l. l. l' "

.’.’:{

RN
"1’4_"_".

i«

..
” D .
_' o a2t 2

PP

b AU AL Al AT R et e L e el o tat talla el Al L Salotat, Pal

'.
column of memory cells that always have a stored value of 2.5 volts from a voltage 'f'
N iy
DAY divider. Vref is used to maintain a constant current in the amplifier. When a logic-1 1s L
)
read and the bitline voltage does not change, it will be higher than the dummy bitline. !
This will cause its transistor to be fully on, causing the above node’s voltage to drop. X
The p-transistor above the dummy is turned on, pulling the output toward logic-1. b
)
¥
When the bitime is lower than the dummy, more current will be drawn through the f,::
Y
A
dummy transistor pulling the output to logic-0. :.:
i~
)
5.2.4. Word Selection. The word selector is based on a NOR of the address o
._:
bits. The design is shown in Fig. 17. The NOR approach was chosen over the NAND o
o
approach because the resistance of the consecutive gates in the NAND design increase the O
)
time needed for the output to change. The inputs are selected for the NOR as either -
address or address in such a way as to prevent pulldown when the word is selected The ",'.'
o NOR had previously been pulled up by precharge_shot and the address select lines are -
|))
gated with precharge_shot to prevent inadvertent pulldown of a NOR output while 1t is _:::_
being pulled up If the NOR output 1s logic-1 when precharge transitions to logic-1. the _’
-.I
value of the NOR passes through the NAND gate This output s inverted 10 became the)
precharge
prechargeahut—q | : E .
F ..;
An/An *° ;2 Al A1 A0 Al -
<
R
Fagure 17 W rtine se v Die -~
s
. 2
r"—" "
S .
S a2
D
-.I’ B R PR A TR : T Coee }
AAATADAS RIS SIACLININTI AP NP IS PP ICITIEA. O A P R P S P P T

. g - ~ - - - - »
wordline select If any e f the worf sefer pe poads e NORO Ly 0 g
wordline 18 not selected

8.25. OneShot. Tty ju oy v v w s P . '
precharge_shot This Signa. s generatesd C0 g 1 o ’. .
shat Slgnal 18t allow the NOR ot | S B L N A R T R S Ces e
transitions to Jogic-1 theret v derreaaing the e neete? © 1 ow ~ a
the prf‘vhnrzmg and the w riiine sew 0 41, cer g s T
described below
Tatae 4 Oipye ~h o e T
—_ v -
“hoar. . h B AR NI}
""”‘”"TL" ‘”J-.I' 1T g !
)
SR S U ‘ ! .
()
— l ! + ‘ -
(} | 0 1
— -+ - + -
_ Y () . i

Where the twe inputs are precharge and peecharge the atcer < g0 . g tes T

d"la\(’"’ ’1\ A ’rh" ’Pnlﬂ, Az !hr Ne~wh ' ot \I\/ it frain, I *

achieved by foeding the precharge thr ugh hae nvere. s

6.26. ECC. The OO comaiste ftw agr st e it b wt oy

and the Deonding secty
5.2.6.1. Encoding. The encoder virouit computes the caght pariy bire pdfe

to the word for error correction and detection Fach of the eight parity birs s derined

from a logic function based on siv different bits of th - nput word bFach panty bt s a

unique combination of six input bits The equations were described 1n Chapter 3 In

boolean logic the addition operation 1= the same as the XOR logic function Thus each

56

. . .- - . N N L
s, T b " A . o
a \Iu - - - - . xl\ h. [P) . &4- L

- Y T "m % te et N NI AT AT R Yat e Tat Ty T
AR P e e S e NN NN D

RS

AL R

AR

el

o, '.,'... .

h .’_ -, . "

D

P AINERE S AR

avs s s s s a4

Par:'v Ko

PR T

Fogore Im Parity Bt Geerat. s

s r et NOK sy o yts as o sheown o bag 1w e iipoats A b represens the
s terer s O the ity gt This aroaite s Auphicated eggbt tianes e g

caotot e par syttt T party bt and ts anplement are then bt e it th

5.2.6.2. Decoding. [« iding «onsists f three steps fiest the eaght svndro
bt are generated second the svndrome bits are used to compute the error vector bats

and hnallyv the error vector bits are XORed with the values read out of the mem.or

The syndroane bt generation s sunilar 1o the panity bit generatiom except the syn-

drome bits are the XOR of 7 signals as shownan Fig 14

f../‘.. s

R A 2O

by T T 2L S U T T T
2

N el e A

ca

o
)

N

9

» e _""" - q(-’.I‘-'- "¢ >, .._:.. fe e .'.-.'_ RN 3 ".-{.-'. 'I‘;I_:I- ‘.l,"._'..".-_(-,'l\‘ _‘1_ R e - "

B
A
. B
’ —>o—
_ >
. D D :
C
_ G {> Syndrome Bit
F
F " Syndrome Bt
E

Figure 19 Syndrome Bit Generator

The computation of the error vector bits may be done two different ways, the eight
syndrome bits could be fed into a Programmed Logic Array (PLA) or each error vector
hit coald be computed using custom logic The PLA method is not the most efficient
because each error vector bit 1s the sum of only one product This would leave a great
deal of area not heing utilized Custom Jogic 15 thus the implementation choice To
imerease the ease of design. a basic cell 1s used and then personalized with smaller cells to
select the desired logic configuration. The logic for the error bit generator 1s similar to
the address decoder except that no gating 1s done with precharge. Finally. the error vec-
tor bits are fed into a 2-input XOR gate to produce the final output as shown in Fig 20.
The other inputs are the bits read out of the memory. The ECC is designed to produce

error control for all 32 bits (24 data, 8 parity) but the 8 parity bits are not used outside

58

VN
KR

.
o

»_a =
o)
7

L
h

YN

R T

PO RN]
a e

B P

v
L]

S
elae

L] .:I
=~

;

‘e

L] :’

L) error vector bit

0 memory bit
\-l

X output bit v
a '.:-
N,
A

. . ~
Figure 20 Out Bit Generator A
‘: d

l\'

S
of the chip, so there is no need to correct them. This reduces the number of XOR gates » 4

- to 24. -
. 5.2.6.3. ECCC and ECCU. The Error Correcting Code Corrected signal sent o
» to the PFA is determined based on the syndrome bits If the number of syndrome bits at
N logic-1 1s one or two, then a single error was found and can be corrected Thus the .-"j"
N N ECCC signal can be implemented using a PLA with 24 product terms of 8 bits each
|]

- . . . -

The Error Correcting Code Uncorrected signal sent to the PFA s also based on the syn- -

.‘ o
.‘-

v, drome bits If the number of error vectors bit at logic-1 is greater than two. then a dou- -;::
ble error was detected and may be corrected The correction cannot be guaranteed. how- ‘-
ever Thus the ECCU signal could be implemented using a PLA with 2° — 21 = 104 pro-
. duct terms of eight bits each. A PLA with 104 product terms is prohibitively large for ;.-‘...'
3 g8

any apphcation The solution for these signals can be implemented using analog circun

techniques very easily The circuit is shown in Fig 21 When one or two of the error vec-)

tor bits is high. the input to the inverters will drop no lower than 23 volts This will .

-

trigger the top inverter, desigrned to switch at 2.5 volts. When more than two of the error .

L] B '.
) vector bits is raised, the inputs to the inverters will drop below 2 volts The bottom L
) -~
, inverter is designed to trigger below at 2 volts. The logic 1s summarized as follows N
\

4
5

-

59

R e

.
N

T NN I ST RE RSN ‘...~-__ AT .._-.';.,-.._-.I-.._;_';.__ S YRS .;. TR _’.._-. RN -}‘-..'-._‘\(“-."-,\._\,v";-‘.\. \.‘.\J.\-_\',\"\-

S,

o,

K< vy

l" k.l'lv a

[<

INLLEA N SN

Lahahihas

R Y

.
e oA N

AR

,
’
O
Ly

R RN RS BT R Y

ol S L Bl A AN A AL L AT S Ll A AP e sl gt pte vt piih aUR gie St JAn JARL A AR ple SN ola Jhe gta o

’

RN S 7 7 7 -
pabe]
f“—\ ECct
E FCCt
A0 G (G GG G HE AC
[[| | 1 1 4
Svyndrome B
Figure 21 ECCC ECCU Circuitrs
Table 4 ECCC and ECCU Determinate 1
"-o A 3] Result
L [0 0 no errors
0 1 not possible
1 0 ECCC
1 1 ECCU
5.2.7. Switching Circuitry. The switching circuitry s used to control the
floow of the data to the memeory arravs The data flow s shown i Fig 22 The word
seleet hines must come from two different sources, one source for reading and the other
for writing The input data s channeled into the memory side being written and the out-
put data s extracted from the side of the memory being read from The signal to accom-
phish all of the necessary multiplexing 1s the Write_enable signal generated by the PFA
controlier as LEF' T
RO

v, -

Y

VO CRC AT S AR VO SRS K SRS R Ot R T N L S AR O A)

.
.
o]

[o T T]

L SN

R AR

St
LA T

L}

‘Y. IOl

.

Sfell S

P X

» ¢ s 1
St

A PO

b
7 Write Addresses Input Data
of
9]
Encoder
32 Left
Left
Left
}
! Bitline Logic Bitline Logic
y ‘
y D D D L
: e . e ‘
» ‘ Left RAM ; ¢ Right RAM :
d d d :
e e e e
r r r v
L S 3 Y N J
Sense Amplifiers Sense Amplifiers
@
Left

\0

Read Addresses

Syndrome Generator

s,i’ 2}/

Error Vector Generator

24// [——

Ouput Generator

2k

Output Data

Figure 22 Memors Chaip Data biow

W O LY %Y s
A I S 0N

.
.

a v .07
- . .

ko L

5.8. PFA Chip

The PFA controller has three major sections, the control section. the data section,

and the periphery These are shown in Fig 23

5.8.1. Control Side. The control side of the PFA controller 1s responsible for
generating the control signals used to operate the PFA controlier and the pipeline It
does this by sequencing through a set of micromnstryctions stored in a read only memory
The address of the instruction to be executed 1s generated by the control sequencer based
on various control signals from the current instruction and certain state variables gen-
erated by the environment The control section was described 1in Chapter 3 and shown
again e Fig 4 The major sections include the control memory. the next address genera-

tor the condition select the stack, and the incrementer

Register Array Host
ALU) Interface
M, T ?
[BENESTS FIATRTATN
Control XROM — Mis;. '
Sequencer —9» Circuitry

Fogure 28 PEA NG Components

Sadmbhaliobosatolon olobdaleolobol ol e el o eced PO O P PP PP PO S RPN -

PPN

PN A TN
o ')
O AR

."/-'

Y %

5 &

S22 @s,
s
&

Sy
h;'ff

\..
KNS
N .".

..' ..' ‘Y ..' '

.

F\F ¥ At o F a8 L Vgl o Ut ot el At ad atiedadsitaiin ftede giadtefio ave at sty st ttodl gty aloratatal gl st gttty oty aby AU atasite AL ol At Al Al a0 Al el tal Rl S At ke Sl hate 2!

"o

5.3.2. XROM. The control memory is implemented using a read-only

(]
Y
Xa
PR
ey S Yy

EDAS memory (ROM) developed at AFIT. This ROM, the AFIT XROM was designcd by Paul

‘v

Rossbach in 1985 |Ros85) and its general structure is shown in Fig. 24. The vertical

h)

AL

-..5

e

‘s
.

pitch of the memory cells is such that decoders are needed on both sides of the ROM to

B

access all of the words. The wordlines run horizontally in polysilicon and second metal.

v
12

The horizontal pitch of a memory cell is so small compared to the sense amplifier that

~ v e
AR

some column decoding is needed. The sense amplifier is four times the horizontal pitch to

run a single bitline. Therefore, two of the address lines are fed into the sense amplifiers ;;

to select one of four bitlines. Additionally, the LSB of the address lines is fed into the :.
F column drivers at the bottom to select which bit is "A0." '
) ',
; 5.3.2.1. XROM Memory Cell. The AFIT XROM memory cell is shown in o

Fig 25 The name XROM i3 derived from the "X’ shape of the transistors around a com-

‘. mon drain Ros85 . Before a read. each of the bitlines is precharged to logic-1 through an ’
v R
n-transistor resulting in a voltage around 33 volts. When a wordline is selected the <
”
s
Al s
Al < »
. Ad-A -.,.:4
A3-I\n.1 Sense Amplifiers and Multiplexors ‘_':‘.'
oo
D S S D e
€ 1 1 e ’...;
< XROM [E| XROM XROM |3| XROM ¢ -
d Array B Array Array B Array d 9
€ 1 1 € -\
r { t r o~
b s 3 s »~
[A0 Column Drivers 4-
Al ! .
PRE e
o
Figure 21 AFIT XROM Structure '::
S
- I o
L
)‘.
y 83 .-?
{
) -

L3
T

4

RS
et

A SR, VPRI G ik, B G S SR S R L S T P g

- - PR A . . . Y .c-g'-'u..I'.i' »
IO RO IR A RSO SRR I I IV UV IR FAF AR

tap ¢ 0ap Mg €00 Sa U0 Vo o g s de X U o %o 8y iag_* a0 a8 "ab Sall ‘et tal et OV K

Wordline i
Wordline i+1
PRE + A0 PRE + A0

Figure 25 XROM Memory Cell

transistors connecting the bitline with the A0 or A0 address line turn on allowing the
bitline to discharge through whichever of the two is tied to logic-0. When the bitline is
discharged to logic-O this indicates the presence of a transistor and thus, a stored value
of logic-1. If no transistor is present, the bitline will not discharge and the sense amplifier
recognizes this as a stored logic-0. If both A0 and A0 are connected to the bitline,
"fighting” will occur and the bitline voltage will settle to 1.5 volts. Since the sense
amplifier is set to trigger above the n-transistor at 4 volts, it will correctly recognize this

as a logic-0.

5.3.3. XROM Sense Amplifier. The sense amplifier is used to detect the
value on the bitline and amplify it to a full 5 volts or O volts. The implementation is
shown in Fig. 26. Initially, the bitline is precharged through the p-transistor at the top of
the cell. The two address lines which select one of the four bitlines are already stable.
Thus at the end of precharge, the bitline below the selected n-transistor is at 3.3 volts. If

a transistor is present at the word selected, the bitline will discharge to approximately 0

64

TR P P T N R G Py G P P T P O R A R T O T AT

"’ o ..l.. -7-.
Al el u s

- & 5
1T MY

2 Y e
DA ¢

™
L 4

R T
L 9

Cay

T sy
4§

. o
RS,

et wa e
AL AFUNS ‘, AR

Pt

A
S

7

‘r'at

¥
[y

- 'I. ' ‘f"f

o e e e s v v ®

<

[

A

cac gt

x

.t
.

..'._....,
Yilee s e

on 1
P

P L]
IR

o RPN AADVRY

DDA

po. A

. d'if

TetatataTa

LAY

b 0 i e A

AN

[Y

* .'.’ e, vt

.
.

"N

p)

LSRN

s

Sl fiaare 0 a b anh at atia 8'at s tiad'e A e d sl e el it o) mt gt g 8 2a% eV At ad A" it At et e orat A\’ ke s AOR BL

:—déb—ﬁ

Mux

Bitlines

Figure 26 XROM Sense Amplifier

S:jiﬁj'ir"f)r‘ﬁ + o

volts, this causes the gate connected above the bitlines to turn the p-transistor on, rais-
ing the output to logic-1. The two transistors before the two inverters are designed so
that they become an inverter triggered a 4 volts. The n-transistor gate is not connected
to the p-transistor as in regular inverters to minimize the capacitance on the sense line.
When no transistor is present, the bitline does not discharge, the n-transistor pulls the
output of the pseudo-inverter down, and a logic-0 is output. If two transistors were on
the bitline, it will settle at 2.5 volts below the n-transistor. This will drop the sense line

enough to turn the p-transistor on the pseudo-inverter output a logic-1 as expected.

5.3.4. XROM Pipeline Register. The XROM pipeline register sits above the
XROMI sense amplifiers and was developed by Capt. David Gallagher |Gal&7 . Using a
pipeline increases the utilization of the XROM. When a pipeline is used, the last word
out of the XROM is being executed while the next word is being fetched. By overlapping
the execution and fetch operations, the eflective speed of the controller is doubled.
Without a pipeline, it would take one complete clock cycle to fetch the word and another
to execute, then the next word would be fetched in one clock cycle and executed in
another and so on. With a pipeline, however. the clock cycle needed for fetching is

65

"' ~ \:‘_.. O .\- N ;\.'._4 e et _..'_.-.._- ,--:\-.\..... _‘.._‘.‘_..-- _‘\.-' '._ RS ,-‘-,- K .._.‘._, L ., e .'__.~‘ e L

(l"’ -

- v v
-

A e s
1'.'.l’.

S A b

3

11

tan e ~’1‘ 'f.u J

-

g 'l. ." .l' .l..{ L]

=

ANSANSS T,

C e
PR
'.l. 'J

o A

»

-y

o

N

~

hidden by the execution of the last word fetched. S

. RN
, .:".':“ '.\'
Nt The pipeline works by using a modified MSFF to store the instruction from the N

)

’ XROM output and isolate it while the XROM fetches the next word. Additionally, the f:::
[pipeline may be logically separated from the XROM for testing purposes. In this mode, :-::
N LR
o
the pipeline becomes a shift register controllable from several chip pads. “'

=

6.8.5. Control Sequencer. The control sequencer, designed by Larry French -
[Fre86: and modified by David Gallagher [Gal87 . determines the addressing for the }:

)
XROM. It consists of five main blocks, address selection. condition select, branch select, :'.:’
: incrementer, and stack. ::;::
: R
5.3.5.1. Address Selection. The address select block selects the next address .

Pl

for the XROM from four sources. The first is the next address field of the current

instruction. Allowing the next address to come from an instruction enables the microcode

&
[)

- to branch. The second source is the top of the stack. Using a stack allows the use of

subroutines in the microcode. The stack will store the address of the instruction follow-

PR A

L N L N

Y Y

ing the call so that program control can return to that point. The third source is the

- incrementer allowing sequential addressing. The fourth source is an external source This -'_:'.

external source is used to manually control the sequencer for testing of the controller. In

Pl E N

a more general processor, this source can be used to map functions from a register .

5.3.5.2. Condition Select. The condition select block is used to select one of

g thirty-two possible conditions. These conditions are used to determine conditional

branches, calls. and returns. The original 32:1 mux routing was slightly modified for this

thesis effort to allow access to all 32 condition inputs. French gives a detailed discussion

e i i B
.
s

on the construction of the 32-1 mux in his thesis Fre®6 The condition selected depends -

86 -

. .

P

. s e e T T T T LT N L e e e N L L e s T T T N L W N,

PR - .. \"|4>»' ‘.A' .
RS ERPIL IS ISR ALY, L

AAALCAACOE ki

on the value of the 5 conditional mux select (CMS) lines generated from the XROM. The

conditional input, along with the values needed to select it appear below.

~rthine

Condition Mux Condition Mux
Select CMS Condition Select CMS Conditicn
0 1 21314 0 1 21314
010] 0| 0| 0| notdefined clojlofojl not defined
0Ol0} 011 0] ERROR 00|01 1 | Negative Flag
010, 11010 Zer: Flag 00| 1] 0|1 | PFAOperate
0 Lol 1 1 | 0! 4Dune 0.0 1 1 1 | Watch Dog Error
0 [1] 010" 0! WIEn €1 o ! oot 1| WDErrCel2
=~ —— —+——+ - —— R + ~+ -+
ol 01 i o WDErC o 1ol b WDEr N
—4— ——— o+ —%**ﬂ—*
ol 00 WDFEm o 11 lo 1] WDEmm13
- l —t e B e B
o1 10 WD Es o 1l WD Er R
1}- — + 4 - -+ + .
10 0 0 0 WDEmr 10 oo 1 WD Err o3
[o o — -+ - -+ + -4 R —_—
10 0 10" WD B s | I OO TR 1 W B 32
[—y - e — 4 -+ + - - -+ - -+ A
10 1 0 0 Ermelnorrerer 1 0 1 0 1D EU Men,
—t 4 4+ - 4+ - - - -+ -+ -~ 4+ -+ — —_—_—
L0 b0 FU Memy 0111 FV Men e
b— ——4 — - —¢ -+ + - - — + - - — -
[! 00 b e e i 1 (AT | oo Moo
. - -+ -+ — - - + + rs + _————
) 1 0 1 0 Ft Men 1 1 t 1 1 Foo Mes 2
. - - -+ - + - - - -+ - +
! 1] 0w Parcy b ! 1 | 0 j [N 1
+ + . -~ + + + - - -+ - -
! 1 ! I [bE . ! ! 1 | Pt o
The reasons tor sele tong thess parts ubar contitoes will be explamed woen the mue roeowd
devel pment as disoussed
5.3.56.3. Incrementer. Tty i rementer can be amplemiented by placing a full
e b bt settine e Cokeanpats tooger aned the ther toothe previus address
the carty o0 2 the deast sighoeboare bt to Toand detting the carn
N the we ot ey gt the wfders s alwan s et

through all 7 0oes

Table 5- Condition Selects

te wimphified - 0

the »quations can

Sum = A zor B zor Cin and

Cout = A (A rnor B) + Cin (A zor B)

Sum = A r0r Cin and

Cout = A and Cin.

Additionally, since Cin to the LSB is always 1, the equations for this bit simplifv to
Sum = A and Cout = A. Thus, all bits but the LSB can be implemented with half-

adders as shown in Fig. 27. The LSB can be implemented simply using a single inverter

5.3.6. Subroutine Stack. The stack is used to store the return address for a
call. On a cell, the address of the next instruction is pushed on the top of the stack. On
a return. the top of the stack is poped, and this becomes the address of the next instruc-
tion. For the PFA controller microcode, there will only be one call active at a time mean-
ing that the stack only needs to store one address. Figure 28 shows the stack for more
than one stage to illustrate the stack operation. When Push is activated. the input 1s fed
inte: the first MSFFE and the values of the following MSFFs are fed into the next MSFF
The 2-phase clocking keeps the values from overwriting each other until the proper time

When the Pop is activated. the output comes from the top of the stack and all other

Cin

A ——-——<>——[>O

>

SZ | §Sum
I

Cout

Figure 27 Incrementer Half-Adder

68

I T T e U U LI YV U TR
ey \I"-"_ > J'\-I‘\-'\I_':? .r_f.."\r,. o \A.d'\ \':(_. -’\

-

»

PAN AN

‘
“~ -

PPV o S
. . .,

Eading ad od ad ar ol At Al Al il L A S A A A0S

IS Y VEROCE XA

M'w.'tb () ST T
ot

PG |29 [e Ve

AN A
<
-

-

Ouput
-

‘.
-,
h" e . ' b)
i b K
~ values are fed into the iy oo f oL s
-“
L*.
)
N
- 5.3.6.1. Branch Selection [re v o
E- the next address and grnerat- th oot A, o .
‘.
", .
sense 1s determined by branch_on 11 brunon o« 4 I
- branch_on=1 the complement f the o3t v~ s 0 e,
®

mined based on the next address fiejd NAE ar ' 0w

Table 6 Next Address bt NAE ~e oy

NAFO NAF1 NAF? Fun~ti ¢ em

i —) .
0 0 0 Continge NAC D LERRA L AL
0 0 1 Retyrn A;__A:Zl!"l 1Y .
0 1 0 Cali NA e Nyt AR i 7' N e ' PR 2
0 1 1 Bran-h NA = Nat Auge b oe -
1 0 0 Cond External Loan NA = bxteria 492 B .
1 0 1 Cond Return NA o= St T oo Ll

) . vl et ‘wt ! — b AT

1 1 0 Cond Call NA o~ Nxt Addar b 0 oon N } A
1 1)| Cond Bran-h NA = Nxt Agar b ourscoa)

* NA=Next Address

The conditional functions are executed when the selected condition 15 activated from the

oo

69

IR ALY RARMS

§o

condition mux field described earlier.

5.8.7. Data Side. The data side if the PFA controller includes the registers,
the anithmetic. logic unit, and any special configurations for data handling including spe-

cral register interfaces and data data path insertion.

5.3.7.1. Register Celis. The data in the PFA controller is stored mainly in
registers This gives a uniform method of access and increases modularity and regularity
o tie Javout The basic register cell 1s shown in Fig. 29(a). The cell is based on the
ANstE deswnibed earhier The input 1s loaded into the first part of the cell when Load is
tagto ana the nising edge of PQ2 occurs The data is latched on the falling edge of PQ2.
O i ssing edge of PQY the data 1s loaded into the main part of the cell. When the
varye o~ b be driven on the A or B bus, the signal lets the value pass through the t-gate
t oo 1o the bus The three iverters from the PQI1 t-gate to the bus are staged to
i e maasinutn current drnve to the bus line. Two other register cells are needed by
e b A conrraier The tirst allows the cell to be driven from external sources other
e ke Lus oand the second allows the cell to drive its value to a destination other than
ety The externally loadable cell s shown if Fig 29(b) In the cell, the load t-gate is
to passed aldd the anput as driven o when the other load signal is raised. The driveable
e showe s b 29000 I ths cell the value 1s tapped off right before the t-gate
soverters e g t-gate followed by an nverter In all four cells are needed to implement
ali the registers a basic cell a loadable cell. a driveable cell. and a loadable and driveable
cell The loadable and driveable cell 15 just the extra cell circuitry for both options added

t a single cell

- e DI T I - P S U N I

AN
. ,
S
70
'u_'-"..'-.‘._" "'-.'-. -.'->' . -.'A " e v-A'> '..-'.v '. - - . - - .
W RP PV AP PSP ST PP RPOT AP SP ISP SR I PPN B

"'
»

A AL
% %

oy T e T

‘o

P

AR

PSS

A

T

. ..
ttet. .
o e L

‘hte ®Te . e ®
r P ""

LAY}

Py,

st d

4"
.’

s ..A.",,,“‘

rrrld

A select

' '.}_’. R AN

[~ B select
' PQ2 PQ1

Ea 4

(a) Register Cell

L]
[AV R

A select

'D

o

C bus

[el N §

“ ‘;.') !

External

‘.‘ Source |
. Ext. Load @ ﬁ

B select

KR

b (b) Loadable Register Cell

PN

A select

Load PQ2 PQ1 B select

%— Ext. Drive

C bus

LSNP W -

LA

PQ2 PQI
(c) Driveable Register Cell

o A

ARANEN

Figure 29 Register Cells

..
. \"\'l
VNS

LA AaA.

71

)
L a A .

N . el .‘,.,-‘! f,‘.l-.'f.\I NN N

L .-.m.,_,n...“..,-..u......:-'.‘-o..l‘) A“'un i ..A'J, F R I IS W L‘.'ll‘.l.I.iJ.f‘l..fAi‘l’J-(M‘JJMAJ‘A‘_L L"L(L_.’A_{ '

$ [JYRJ .,

L el el ¢ a0 "ate st el 'al. "at.tal, ‘et Vol Saf tat Sal Vag dug Ves ig tal veg el el ai feg atoghealo ot 0

The A and B busses are precharged for two reasons. First the time to pullup the
line can” be incorporated into areas of the clocking where no useful computation is taking
place (i.e., register selection), and second a decrease in the register cell size. The standard
inverter contains a p device for pulling up to logic-1 and an n device for pulling down to
logic-0. In using a precharged bus, if the inverter output is a logic-1 no action is taken,
however if the output is a logic-0, then the bus line is pulled to logic-0. Therefore by
using precharged buses, the p-device pullup is not needed. This significantly reduces the
area needed for the register cell. This size directly impacts the register arrays. If a cell is
decreased by one lambda in the vertical direction, this equates to decrease of 28 lambda
for the entire array, one lamba per register. The removal of the p-device reduced the size

of the register cell by approximately 12 lambda in the vertical direction.

5.3.7.2. Registers. This section describes all the registers and how the data is
mapped in them. The previous section described the three types of registers cells that are
used. Each register is an array of the type of cell needed according to the register’s func-
tion as described in chapter 3, Section 3.2.5. The register cell is an array of 16 basic
register cells. This cell is used to implement the error count registers (WD, EC, EU, and
PE), the TOUT register (Timeout), and the TEMP register. The sregister cell is an array
of 16 loadable/driveable register cells used to implement the TSR and PSR registers. The
dregister is a register using 16 of the driveable register cells and is used to implement the
CCR register. Finally, the ELR is made up of 16 loadable register cells. The interfaces

with the registers is described in the following section.

The least complicated registers are the error count registers. These registers, includ-
ing the 9 watchdog counters (WD11-WD33), the 3 parity error counters (PE1-PE3), the 3

error corrected counters (EC1-EC3), and the 3 error uncorrectable counters (EUI-EU3),

72

¥4 N A

L

22 .

Ya ol o0 8 N

";"‘,";‘.‘_\&ﬂi

]

e

:/’/

Iy

g ERE S
b R B A e i
. 4

o

C oy
-

Tt Ad

EPL ALY

> R A Y

SOl Talb g

....-‘

. store a 16-bit count indicating how many errors have occurred for the event the register
counts. The WD registers are used not only for fault monitoring, but to determine which

WD will become the next active processor should that become necessary.

The CCR and the NCR store the current configuration and the next configuration
respectively. Each of the nine MSBs are associated with a WFT processor and indicate,
by a logic-1, if the processor is active. Accordingly, a logic-0 indicates that the processor

is in watchdog mode. The bit to processor translation is shown in Table 7.

Table 7: Bit to Processor Translation

Processor | WDI11 | WDI12 | WD18 | WD21 wDs1 wWDs3 not defined

Bit 10 ¢ 8 7 [}

6]4 3r2¢t1i}o

The ELR, Error Location Register, indicates where errors, if any, have occurred dur-
ing the DFT computation just completed. The first nine bits are similar to those for the
CCR and NCR, but the following six bits are associated with parity errors and memory
uncorrected errors. There is one bit position for each of the three columns for

Parity Error and ECCU. The translation is shown in Table 8.

Table 8: ELR Translation

- WD | WD | WD | WD | WD | WD | WD | WD | WD | PE | PE | PE | EU | EU | BU |
P 2| |22 |3 s |2l |23 |12]|3]|"
Bit | 15 | 14 | 13121 |1w| e |8 |7 |els|ae|ls]|2|1]o

The TSR and the PSR store the temporary and permanent scale factors, respec-
tively. The TSR is used to store the scale factors to be driven to the WFT processors
and the receive the output scale factors from the processors after computation. Once the

scale factors are received after a computation, their values are added to the PSR for scale

.v'_--',
73
e e Al ST S e T e R R Lt T LAY

..A..A;.l).‘l\.

Ry 1y S \.\.,\ ._'!',::, -h. S e _‘a :; SN } :;

. -". oy

pLLN

SPRETL e

ong -
”
Y

R

Y x
"-.) A

\, n“ \“'V . i‘

i T I
rS i

s
IR

.-)-’-'.
e ' e S

?

/T

2
i

L
4 YA
2.2

l.f" r

- accumulation. The TSR is then shifted so that the scale factors can be passed to the next

2P
)

»
» e
i)

stage. Each problem uses five bits to store the accumulated scale factor. Five bit are at

|
| worst case when all the scale factors are 7 (i.e., 111 + 111 + 111 +111 = 11100). Once :::

o
) R
» the contents of the TSR are added to the PSR, it too is shifted so that the least .~
. f

significant set of five store the total scaling of the next DFT to complete. The bit transla-

tion is shown Table 9.

Table 9: TSR and PSR Translation

; Register Scale Factors (MSB-LSB) nd 'S
: Problem 1 Problem 2 Problem 3 '
TSR | 0| o |s2|{s1|0]|o0|o|[s2|{st|s0]|0]o0s2|s1|s0]- i
PSR 84 | 83 182 | sl |90 [s4 |83 |52 |sl |90 |sd4d|{s3|s2sl]|s0]| - ‘3\ ‘
J Bt [15|14|13f12|1n 10|90 |8 |7|6|5|4a]|3|2]1]o0 -

Eed
N

r'-'{'
s

The Problem Status registers (PS1, PS2, PS3) are used to store information about

LIS

o

.

each of the three problems in the pipeline. The five MSBs store the accumulated scale

Y
Al - :-s"
y factor for the problem, the remaining bits are used for error identification. In this way, o
g '
3 s
, the host can determine, in the event of a failure, which problem is bad and where the -

-,

error occurred. The LSB indicates whether the problem finished. This identifies which

g
.
e
Iy

o,

]

','-.c

?

. processor column did not finish in the invent a timeout failure occurs. The information

in the PSi registers duplicates the information stored in other registers, but consolidates

-~

3

it by problems for faster identification by the host. The bit translation is shown in Table

10.

Table 10: PSi Translation

.

oA

Reg Scale Factors Active Error nd Parity Error Memory Error Done
83 52 C1 C2 C3 C1 C2 C3 M1 M2 M3 Dn
14 13 10 9 8 8 5 4 3 2 1

sl
12

RS

(-]
-~
»

L

c o0 d
SS".D

74

L
D
Ld

- I“ s 8 &
Y
Y

.')'\.‘\.r"J",'.f.'-r-‘f"r\f."-""J'.'-“.'f-'\ e - w._,..,:.__\"\'-")

[:\"'\""""‘""\W""v"’"“ v fo o'ty . . N P 2™ o4
N,

Qe 5.3.7.3. Special Register Interfaces. Same registers need wpecidd register
.:t_-,
interfaces to perform either a shift a load from external sources w drine 10 externad den
tinations, or a combmation of the three The special requirements are <cammorized 1o
Table 11 :
Table 11 Speaal Register Requirements
- e
Resister \p ecial Requirements]
5bit S-postion shiftable K
TSR Drive State Seale Bus *
Load from State Scale Hus
PSR 5bit 5position shlflnl»lf
Drive sets of 5-bits to PN PS2 PSy .
ELR Ld 8 MSB« from Error Assignment ’
. Load 5 MSHe from PSR -
PSy . .
Load LSH from Done Input Pads
CCR Drive 8 MSBe to State Scale Bus -
Fach of the interfaces 1s shown in Fig 30 The shift 1s implemented as follows the
‘:. shift signal (ShAft PSR for the PSR and Shift TSH for the TSR) allows the tapped value to .
pass through the t-gate and directly into the load by-pass in the destination cell For the N
load. a t-gate 15 put before the load by-pass The signal on the input line 1= fed directly :
into the cell when the t-gate is turned on (LdScale for TSR, LdELK for ELR. LdScale for
. -~ . . ~
PS1). For the drive, a t-gate is attached to the tap point before the drive mnverters of the -
‘ X
register cell The t-gate, when on, allows the tapped value to pass through and onto a
staged inverter to drive the line. The t-gate prevents unnecessary capacitance when the .
cell is not driving a line. For the TSR, another t-gate must be placed before the connec- -
l: ‘ -,
) tion to the state/scale bus. This prevents the previous scale values from driving the bus
v, h
$: while the state values are being driven to the state/scale bus from the CCR. The -
,, >
”, L L >
v, state/scale bus and its interfaces are discussed in a later section. For the CCR. this is not -
:: o,
- . needed because of the extra circuitry needed to select the state information.
. .,)
" 'f_"'.ﬂ, \
,:. et ~
75 3
-'. \
% N

L4

P’

QRO PRI R NI Y, (R, LY, 11 oty

e
s 2k o ik o Adad ad ot ok ki ik ke v
.

. e e

’
4
|
.
’
»

s ad ad o 2t 2t A il el Al Ab iR A T T T T
e

['rveS ale h

L dScaie —

[T

ta) TSR

e PSR
s alaln{ o]l ol s]els{als|2]1]0
} 4+ - ShittPsR
— =
(b) PSR

[dtl

1sj14p13112(11f10{ 9| 8[7(6|S5({4{3(2]110

LdPS —%—H—%——# -%— LdScale

15S)14p13)12]11]10(91 8|7 |6|S5S]|]4|3]2]|]1]0
(d) PS1,PS2,PS3

=

LdState

Wy
e

elal Ak

15114113 112111110 91 8| 7|65 |4 |3[2]1]{0

(e) CCR
Figure 30 Special Register Interfaces

76 3

« v & @

8

-.f'.- "

The extra circuttrs s needed for the CCR when 1t drives the state information onto
the state scale bus This circuitry selects which of the configuration bit 1s driven Since 1t
is possible to load the state of three WET processors at once. one in each column. the cir-
cuntry selects which three bits to drive This circuitry 1s shown in Fig 31 The LRi
= 123 selects which of the rows to drive and the LdState allows the information to

drive the state scale bus only when loading the state thus, preventing fighting with the

scale anformation

5.3.7.4. Register Selection. The register selection cell determines whether the
register 1s selected to drive the A bus. drive the B bus. or be loaded from the C bus. The
cell has the same vertical space as a register cell This allows the register selects to array
nght along side the registers. Inside the cell are the three selection circuits. The selection
circutt is based on ANDing combinations of the five selection bits and then ANDing this

result with precharge. A gate-level description is shown in Fig. 32.

State/Scale Bus
SS1. 0 §S2_0 §S3 0

LdState 2 %7)‘ g
LdRow3 ;7{ ?\ 6
LdRow?2 S > >&
LdRow! > > >
TR

11 12 13 21 22 23 31 32 3
Processor Number

Figure 31 Extra Circuitry for Selecting Configuration Bits

R T R R

77

] .
Wil

A

SR AR
8

J‘.{I

% it

2

s v
ala .
e M
(]
-

\' ..f‘- r-.r"t ot
. oy

s

LN N Sk S o o'}
AL

bt
BN

&’ ‘; .I..l
A

AR RN

XAANNE

:5. %‘.l

h e T D e g
J"}‘AI’,)\I'-{'::

Sy e 1™ ?
-

‘l -
> A

PQ."-’&){',.

g-e

v

o &N

AN R)

\.". ey

2e b 2 ok 2l el Nk Sall Vol el Cal Sol Nl Sab Gl Sl L G EGA Al AR 0t L RN AR LS a0 A0 S0 SO aha pih ate gt aTa 00 S08 00 N AR AL AL SR 20 2R ata ote she va Re ong A Jls f

A3
A2
2(1) Register
Select

PRE

o« 5
v e

Figure 32 Gate-Level Description of a Register Select

; L

The inputs for each select (A bus drive, B bus drive, C bus load) are fed into a fully
CMOS NAND gate. The NAND was chosen over the NOR to make the transition delay
more equal in both directions for the least amount of area. If a NOR was used. the delay
for a O-1 transition would be slower than the delay for a 1-0 transition because of the
mobility due to p-diffusion since the '1' must pass through 5 p-transistors This could be
offset by increasing the length of the gates on the p-diffusion, but this would greatly

‘:-. increase the area. Instead, the NAND is used where the delay for a '1" is through only
one p-transistor. The difference between the two types of implementation is shown in
Fig. 33. The output of the NAND gate is inverted to form the AND and this is gated to
a NAND along with precharge followed by an inverter. The purpose of these two gates.
making an AND, is to prevent the selection circuit from activating the selection lines
during m. If either of the drive lines were to be activated during precharge, the A
or B bus might not be properly precharged. If the load line was activated during

precharge, the precharged lines would be loaded into the register destroying all previous

data. The output of the inverted NAND is then staged-up to drive all the selection lines

for the register cells.

SNy
PR

The VLSI implementation of the cell allows them to be stacked vertically for modu-

b pm i

N larity in the design. The selection bits, along with their complements, run vertically

78

" T P R A R N R A R P TR N PR R N A R T N W I N I N N P A B NI
IPURSIIRAN O, S S0 s IS IR VS, P s s by e A ST M R AP TR A 1 A r s R R oy

aath S8 2"t oTe ST RV NS Te Ve o e JNe e 2 oot Ja o o0 sne oRs Jie ia ot e a kel R s e e e at g o s e e g L a Aa Sen bl et Lot tad Aod Dot g Tt et Tob Pob ol YL E

vad vdd
40 (@G A0 [5
I NaND -
— | :
e
o]
. d
L o NOR ‘:]
CHGHE HEHE —5
GND GND
(aYNOR GATE (b) NAND GATE
Figure 33 NAND and NOR VLSI Gates
through the array of register selects. To personalize a register select, the select signal or
its complement 1s fed into the NAND gate through the use of a select bit cell. This style
"‘ of implementation allows easy change from one personalization to another so that only
the configuration of the select bit cells is different for each register select. To select regis-
ter 00111, for example, the personalization would be (sel_0,sel.0,sel_1,sel_1,sell) where
sel_0 selects signal for the n-diffusion 'and’ and signal for the p-diffusion ’or’, and sel_l
selects signal for the n-diffusion 'and’ and the signal for the p-diffusion ’or’. A cifplot of a
register select cell is shown in Fig. 34 that shows the personalization for 00111.
5.3.8. Data Path Insertion. The XROM must be able to insert a literal onto
the C bus. This allows constants to be loaded from the XROM microinstruction to the
register. This is accomplished by using an array of t-gates controlled by LdCbus which
drives the XROM field onto the C bus.
'S:'.:f-’ \‘
) 79 o
:\
i

-
LT AANAN R A AN e SRR LAV Y S AN L

Gy

)

~

.r.-.-,\-r*..r e

Figure 34 Register Select Cell with 00111 Personalization

5.8.9. Arithmetic/Logic Unit. The Arnthmetic Logic Unmit {ALUJ computes
the data manipulations for the controller and was designed by Capt Dave Gallagher
iGal87]. It uses four functional units and one passive unit for each stage The functional
units include logic to implement addition, AND, OR and XOR; the passive unit com-
putes a MOV by passing the data through unchanged. The A bus feeds directly into all
five units. The B bus, however, is fed into a selection unit that selects either B. B. 0. or 1
depending on the function desired. A 5:1 multiplexer selects which unit is output to the
C bus. Figure 35 shows the implementations of the three logic functions. Additionally,
the ALU will compute four flags: overflow, zero, negative, and carryout. The PFA con-

troller uses only the zero and the negative flags.

5.3.9.1. Integer Adder. The integer adder works with two’s complement
arithmetic based on the carry-select method [Wes85]. With the carry-select method, the

sum and carry out is computed for both a carry-in of zero and a carry-in of one. When

80

R R e S e e e et et
eV e e N A e R e e N R A L R LR

f /.:‘.- \‘ﬂ

- g 77
[

NN NN

- A

3 v e -
Lt 4 .

(N I AR, o P T]
X r)._ll

BV

ST o

e

AR

,"/'

AR 2 T B
g Cr Sl
A ‘.J. 4, .‘-

. e S
LN SN

LI

r' Ll ade ARt ' e Auiofef B’ g sk et Sad and ad sl Sudidind ad 4 A Al dvin e gia i i Ste e it S i te i S i Jnb b M dnt i At Sl i ALl L ol et . A el

|

‘: - . v e
¢ v < N . - R N
. N N =) RS
. \ ! b)
\ ‘.\,‘ bl W .:\\ < W
-
' ‘h N AN O A NREE N .
. \ N v
Ta ~ ~
“ ' \ < a [y Iy [S st [\
A ' ~ s ' . ' N by I
\ W T .ot st e this can be
0. W wrages e s sh own e b 3 Noow the onteal
Vs he e e ge 0 D el g Lo propakaty through 4 adder cells and 4 add-

S es D et es the timpe Tor the AL to slighthy donger then four alu cells for

eoertme It aditn o The adder equations are

Sumie o= A rer Bopoe O

Cuarry = Al + {C + BC

However the carry sum may also be represented as

[14]13]
i I i L
TDoafafiafy [ufiolofsbn Tl el s[4kn "5l 2f1]o]

1110} 91 8 7] 6] 5) 4

Cin

Fig;re 36 Carry Select Adder Blocking

81

Carry = (A mor B)A + (A ror B)C

This implementation for the carry allows the use of the A zor B signal generated for the

sum to be used reducing the amount of circuitry per cell. The implementation is shown

m Fig 37,

5.3.9.2. Functions. The functions computed by the ALU as well as the sig-

nals needed to generate are described as follows:

a0
b0
—{>0- S sum0
Cin b0
b0 I
50 ‘ cy0

Figure 37 ALU Adder Cell

82

SN X NI RN ONIBTNNN

: 403 DES!H uo xmmnnu N VS1 "l‘ mm - 272
ﬂ.ﬂ HM_PROCESSOR(U ﬂll FMCE IIST TECH
NRIGHT-PRTTERSON AFB OH SCI

UNCLASSIFIED R S HAUSER DEC 67 IFITIGCEIEWO F/B 1276 N

‘4 a0 o0 a'8 2"

.

TP N

LA NN | AN P

,.A OO N N " L Y o .-‘ »® -, X . : L4 A ’ f d *
\fh LA - h\f\f\fh-l\.tﬂf& 'h-h-l LALA .\- A-» \r\h vh-« 7. \..-.--\u\k Vs \‘hﬂ-\o\u-c\l..f b--u\..- .-\Jﬂ-ﬂ-.b! is \- \f; .‘\f\.o .--,‘.. KN ..-n-*.» B 58,0 4 4 [N LA SR
B -
vy oN o
R S B I
. = = —
o =
dAay
vt | <
dn 441,y -
M l==_ — _ N
[— —— h”lith.
]
FELLSS
PR AN
IS
Seeee
AR Y
RORAX
qfﬁnv
P XXy
WY
o ,.szf

Table 12: ALU Control and Functions

<
‘n‘n”;*lsl~l

Control Signals

Function Operation Implementation
a2 |al | a0 pe P

0 0 | nop -

0 Ce Axorl
Ce+— AandB
Ce—AxorB
CeAorB

A Ce—A

= ;‘):‘)11

0
0
0
0

I..,‘ .l

. Fd ."_ -'.‘r".l

Cin = Cin 1
Cn=0 Cn=20

A+1 Ce—A+1

A-1 Ce—A+1
A+B+Cn | Ce~A+B+Cnn
A+B C—A+B

Not Defined | - -

SUB A-B Ce—A+B+1
SUBB A-B-Bnm Ce—A+B+Cn
CMP A-B Ce—A+B+1

o|lo|o|lo|o|o]jeoe|o|b

Sy

BN
Yhiaid

*

G

’

A

Nt
AP

5.8.10. Host Control Interface. This section describes the host interface with

. ool
&N
P

the PFA controller during the WAITGO loop. The WAITGO loop in the microcode is

.

used so the host can examine the PFA registers and change, if necessary. For the host to

AR A (g

examine any register it must be able to select a register to drive onto the data bus. For

loading, it must be able to put the input data onto the data bus and select the register

X

to load. The signal HOSTCONTROL determines whether the inputs to the register

‘ ; l"’l

LA#

selects come from the XROM or from the host and the signal LOADSTUFF determines

P A

the data flow direction. This allows the same set of host register selection signals for both

L)
A o l"l

reading and writing. It also allows the data pads to be used for reading and loading of

data. Thus, the number of pads is 21 (16 data, 5 register selection) instead of 42. Figure

38 shows how the determination is made for the register selection. The host register

83

* .-...._ T T S PR TATI N e e At A ‘-. -; ‘f’\"-' \‘. \.‘ \.‘:..‘

PRI N P R 5 TN gt
) 8 ab "t al.", ROV URTRIOX gk ‘et Vag ‘af ‘sl " b tap ViR Val \af Vol tap v San Nad Vol Va8 v 0 *af Sag ¥ § 0o Vg to) B 9.f tap Vel U .'al ‘gt 4,

"y “or
>t

® by

- v
XA

L)
(O]

v W
>

S

Ay
}'
P
‘.l

H Select Pads

oLy v

HOSTCONROL

o

*»

LOADSTUFF LOADSTUFF

e

A Select

X

HOSTCONTROL + LOADSTUFF R
B Select 0O

woa
XA

% X

'C
’

HOSTCONTROL + LOADSTUFF M
2 C Select

-
- D~ a0 X
VO O—OW

w
[

g

A

Figure 38 Source Determination for Register Selection

. A e

DRCRES

selection source for the A bus will be the XROM for HOSTCONTROL+LOADSTUFF

¢ s
1
w1

',’.,..

and the source for the C bus selection will be the XROM for

VY 7T F OV NS vV wowo mCLE
1]

s

i

L A
s .

HOSTCONTROL+LOADSTUFF otherwise, it will be the host. This ensures that when

o\
& /)

the host is in control, but not using one the register selects, the inputs will be set to all

sooar
P{' e ”’,

i‘ zeros from the XROM preventing nondeterministic results from floating lines. Figure 39
¢

<
Pa

)

shows the source and destination determination for the data busses. For the data bus,

data will flow from the pads to the C bus for HOSTCONTROL-LOADSTUFF and from

l.l'l'
Yy vy
&

.
[

Ay

R d
o,

A Bus C Bus

n'l(-’
PR

HOSTCONTROL HOSTCONTROL

"~
Sa

LOADSTUFF LOADSTUFF
MSFF LOADED
——» AND DRIVEN WITH
HOSTCONTROL

LOADSTUFF % % LOADSTUFF

v Pads

Figure 39 Source and Destination Determination for Data Busses

v .
"y
A
v

7

R a

rE, o E, T,

g
e A

»
"

PL AR
i ,J‘,{'y'_‘vﬁr

,

. 84

oy

PR
4 &,

L
)
L

RN
» «

s

a0 4 %

the A bus to the pads for HOSTCONTROL-LOADSTUFF. Using the LOADSTUFF sig-

O

nal prevents the A bus and the C bus from being shorted together. The signals and their

effects are summarized in the following:

Table 13: Register Selection and Bus Determination

YO STAET

HOSTCONTROL | LoapsTUFF | Abus [~Abus | Cbus | Cbus
select destination select source

0 XROM internal XROM | internal
1 HOST internal XROM [internal
0 XROM PADS XROM | internal
1 XROM internal HOST PADS

a

2

o

x

Ay .l:,\""‘,\"ﬁr

-

S5

gy

6.3.11. Periphery. The peripheral circuitry contains that which does not fit

E

into either of the two previous major sections. This circuitry includes the interfaces to

»

N

the WFTs, the state/scale bus, the voting circuitry, the load circuitry, the scale factor

P A A
SAAL

handling, the DFT size handling, the 4 Done signal generation, the ERROR signal gen-

eration and associted signals, and the toggle flip-flop.

...,-.
4‘4’-{-. b"..

5.3.11.1. State/Scale Bus. The state/scale bus is used to transmit data to

v

the WFTs about state and scale information as well as receive the new scale information.

The state/scale bus consists of nine lines with a group of three representing the

P e
.l..l.' .

.I

state/scale bus for a particular WFT pipeline column. The data flow for the bus is

AT 8NN

shown on Fig. 40. The three main signals that control the data flow are LdState,
LdScale, and DriveScale. The scale information flows into or out of the TSR. DriveScale
controls the t-gates above the TSR register that allow the register to drive the signals,

and LdScale controls the t-gates above the register to load in values by-passing the C

’ t‘. /-"-.- .

bus. The state information is generated from two places; the size information comes from

s
o

the size storage cells and the WFT processor watchdog configuration information comes

o -, "}-,
PR

X

A, N
el

lele'e
l"l“

P . . Q
.

R N R L T R L

!

NN N N N N S RN R RO AT N TN AT N T e e AL G
. 3 hd '» - o 3 A 0y 0 ! . . L) ! »

SCQ SC1 SC2

LOADSTUFF
Initial
Scale
Storage
Ldlnit
LdSiate DriveScale
LdRow3
LdRow2 LdScale
LdRow]
CCR bits
6 —>
< o <l
5 K
10 11 <F
1 DH
13
s ST
Size <l
Storage <
LdInit
W/SCO0 W/SCO W/SCO
SZ1/SC1 SZ1/SC1 SZ1/SCi
SZ1 820 $Z0/SC2 SZ0/SC2 SZ0/SC2
_' o I)
_ Col 1 Col 2 Col3

—~
State/Scale Bus

Figure 40 Data Flow for State/Scale Bus

from the CCR. A logic-1 tells the WFT to be active, and a logic-0 tells it to be a watch-
dog. Since the columns have independent state/scale busses, they can be loaded con-
currently. The LR1, LR2, and LR 3 signals from the XROM select which bit from the
CCR to drive onto the state/scale bus. These signals are further gated by LdState so as

not to interfere with loading or receiving of the scale information. The translation of the

86

Se e N '..‘

. i .) \ . I - \
RPN P A A AL RORCN, {A_A__;L":A. 5.":;‘('

4% v Y

. -
B/ |;
B o,
3 ~ state/scale bus to the WFT interface for each column is as follows: 1o
-
? :s .
N & Table 14: PFA-WFT Interface Translation :
“)
: -
) PFA ST1 ST2 ST3 N
,. WFT | WD/SCo0 | SIZE1/SC1 | SIZE2/SC2 ~
"
: 3
Y 6.8.11.2. Voting Circuitry. The voting cell is used to assign an error to one by
o
P, of three inputs according to the voting strategy described in chapter 3. The voting cell 'h:
bn, o
: has several components. The first component is the cell called 3vote. This cell actually o1
::: implements the voting strategy. From Karnaugh maps with inputs ij.k, the following ‘_
- . Ky
N logic equation result for each of the three input to determine error assignment: Ny
~ -
-.‘ o -4{
. error; = 13-k + 15k, .\
. error; = i-jk + i-J°k, '_
- errory = i3k + 15k ::f'
f, One particular implementation is shown in Fig. 41(a). The problem with this implemen- i
“ g
- tation is uneven capacitive loading. The capacitance loading on the ¢ input is 1.5 times ::_
‘.‘.
Yy that of b and much larger than a. Also the a signal must travel through two t-gates, oy
. whereas b ar - do not. To reduce this imbalance, thus increasing speed, the solution .
4 2y
s .
-~ shown in Fig. 41(b) was chosen. This distributes the load while still maintaining the N
4 ~
:’ mutual exclusion needed for the multiplexers. It does, however, increase the number of t- :
gates needed because of the need to prohibit floating nodes. The cell is repeated three R
..: times, one for each set of three WFT processors. The next component in the voting cell is ‘
- N
' . .-.
N the column error generator. This cell looks at all of the nine error lines output by the ¥
:, 3vote cells and determines which columns, if any, contain errors. The column generator N
: unit is made up of three 3-input OR gates. The OR gates are made by a 3-input NOR N
- =
w)
gate followed by an inverter. The column error signals go to the branch circuitry. The
- A -
> 87 2
. ¥
A N
Y -
N N

SR AR Rt

R RO Ry N LR R N R AT R B Rt G S LRt S

»
»

VNI LT

. N Y
RS f.f..’

Teve s 8 W

'#.I.f’-"{'{"‘f_'l-f.J".f.f'J‘..J'.‘J"{‘_.I:J"I'J'..f-’.'".lf- TSRS

_ - B —D_K]—\ 3
B ¥ s —DK— ~
» —PK < B c
" —DK ok fa " Sl IR
N Sl S g e
x —X DK Z
-

(a) Voting Circuit (b) Modified Voting Circuit

Figure 41 Voting Implementation

column error signals are used to reduce the number of lines of microcode by narrowing
the location of the error to a column. The third component is a set of t-gates, which
gates the signals from the 3vote cells to the stageup cell using the LdELR signal. The
stageup cell inverts each of the nine signals four times with increasing gate size in a ratio
of 1:2:4:8 to stage up the signals for greater current drive due to the load on these nine
lines. The stageup is necessary because the nine error lines go to the ERROR” cell,

(described later) to the ELR, and the branch logic.

5.3.11.3. WFT Processor Loads. The load signals indicate to a WFT proces-
sor that state information is being loaded. This information is loaded when configuring
the pipeline. When the LOAD line to a WFT processor is high. the information is lcaded
into flip-flops that store the information until the LOAD line becomes high again. Each

WFT processor must have its own LOAD signal since each must be configured

88

b A g

o

NS U S PO U A U NN A A O A Y

:

MG A i’ 2 K
S, 5?.5

AR Y

LA
-

T VPR,

v

Ca

A

X
2
™ o

L Y

RIS

[

-

.- s. ". .: IS

.
L 7

e v e Y

- '5

. e

R
™.

v 5% e N

_',' .." ‘n,'. S

v

T ARAYS

AR] ;- P

." 4

. l‘l"

A

‘4

\ LS
! 4
\
. individually. However, each of the three columns of WFT processors may be done at the N
.)
y
'l:%‘ same time since each has its own 3-bit state/scale bus. Therefore, loading is done one X
W logical row at a time for the three rows. The implementation is shown if Fig. 42. Since
:: each row is loaded at a time only three lines are needed, one for each row.
e
Y 5.8.11.4. Scale Factors. The initial scale factors for the WFT16 processors >
- must be given by the host. The host inputs these while LOADSTUFF is high. Therefore, i
. !
every time the host raises LOADSTUFF when changing the register values, it must also %
. ensure the correct scale factors. The storage for the scale factors are modified register -
. .~
'_: cells. They are modified because the lines that the cells drive are not precharged as in the ::
¢ ‘.
” register array. The modification is to put in the p-device that was not needed in the basic .
register cell. The input to the cells are gated with LOADSTUFF so that when LOAD- '.:-
"
STUFF is high, the signals on the input scale pads are loaded into the storage cells. The -'
e
(. scale factors are loaded into the TSR when LdInit is raised. This occurs before the TSR *
. drives the scale factors onto the state/scale bus to be output to the WFT processor "
columns. N
L4 .'
4
<
' LdRow! LdRow2 LdRow3 .
11,21,31 12,22,32 13,23,33 :‘_
. Processor Number Loads ‘
-
Figure 42 WFT Processor Load Determination -
Y ~
: ‘-\." 89 ;
y »

e ot . e a T aTe Ca ™ o™ W ¥ A S L T N I L NN, P AT VUL L L S P I T PN RPN, SR e
PSS TR T 3. IS VI 2 . ¥ ¥, \ \ eV > \ \ . N BoloWy \A'- PRI R IR N f.‘.‘l.‘\f. R A A AT S SR SR MRS

A A5 A

¥_s

T

3,
3

’

' i

-

Table 15: WFT DFT Size Determination

SIZEO | SIZE2 | Size Translation
0 0 4096
0 1 768
1 0 276
1 1 16

5.3.11.8. Done?. The DONE signal generated by this cell is used as a condi- :‘_'.}
bl
tion input for branching until the input host and the three WFTs have completed their j::f‘
operations. Each of the input DONE signals are fed into a NAND gate, the output of .
'
-
this gate is inverted three times to produce the desired AND product and stage up the ~
o
.(\-
. . . %)
signal to travel across the chip to the branch logic. ;::
)
L . %
6.8.11.7. Error?. The ERROR? cell determines if an error occurred during a
-~
DFT computation and also generates signals isolating the error to a set of input bits. \,
. .
Figure 44 show the gate-level description of the circuit. The three sets of inputs come ,b
AV
WatchDog Panty . =
Error 8 Errof Uncorrectable N
Memory ~
Error !
N
WDerrl1 \i
WDerr12 oy
WDerr13 iy
WDerr21 \.(
WDerr22 _‘.
WDerr23 h)
WDerr31
WDerr32 '
WDerr33 :-:,.
~
PE) }ERROR 0
PE2 ~%
PE3 ~
"\
ECCU1 N
ECCU2)
ECCU3 s
T
/'::.-
Figure 414 Gate-Level Description of ERROR? Cell o~
G\'a
i
.-\'.
o«
~
91 Y
.-:‘
.r_:
™~
!
SRS IR TR TS I NS I R LIS I P SN
VRWLICOA Yt -ﬁi‘:ﬁ:.&:_& .m..b'n5~;&'_&{\-_&'¢.°_;\:5*t:\'A1-.1ij

.
P, -
.I

".' \} »
.;i

h]
»

S

TR R AR T AL

from the Voting Circuitry, the Parity Error pads, and the Error Code Uncorrected pads.
Any one of these bits being high invalidates the data where the error occurred. The logic
'goal’ is to implement an OR of all the signals. At the same time, the area of the error
needs to be identified, therefore a simple 15-input OR gate cannot be used. Instead a
NOR gate is used for each set of inputs. The inverted NOR, making an OR, is used to
generate to error flags for each input set. The outputs of the NOR are fed into a NAND
gate to produce the ERROR flag. By using the boolean equations, the use of an OR gate
in CMOS would have produced two levels of gates since an OR gate is produced by

inverting the output of a NOR gate. The boolean transformation from the input to the

ERROR signal can be seen as follows:

each of the NORgates produces:

WDerr = WD 1lerr+WD 12err+ - - - + WD 32err+ WD 33err

PEerr = PElerr+PE2err+PE 3err

EUerr = ECCUlerr+ECCU2err+ECCU 3err
the NAND gate produces:

ERROR = WDerr-PEerr-EUerr

by deMorgar? s Law(@-b = a+b)

S§0,

ERROR = WDerr+PFEerr+EUerr = WDerr +PEerr +EUerr.

Thus producing the same logic output but using one less gate. The output ERROR is
used as a condition flag for calling the error routine and the three other outputs are used

to narrow down the error location to save time in the error routine.

92

........

(-lffff -

- 4 4 ¢

v

-
«

e

a2t PRI A
SR AT T

T

5 4
. v

N TR A S
ERCRL IR

v,
'
o~

-
I's

ol

W

SENNSL

b

Y
2hs
Ny Y

b3

b m L ty M Myt "o 't

e e e e e

5.3.11.8. Toggle F/F. The toggle flip/flop is used to generate the FLIP for
the memories. The XROM simply indicates to the circuitry that the signal needs to be
changed. This way, the microcode need not test what the value was before and then
change flip it. The circuit needed to implement this must toggle its output every time the
input is pulsed from the XROM This kind of fip-flop 1s a toggle flip-flop (TF/F). The
TF/F chosen for implementation s described in Glasser and Dobberpohl [Gla®5'. This
circuit, shown in Fig. 45. operates with a 2-phase clock and a reset. The reset signal
comes from the global reset signal for the PFA controller. The reset signal is needed to
put the TF/F into a deterministic starting state, otherwise the feedback loops are
undefined. The input is the FLIP bit from the XROM, this bit is raised for one clock
cycle before each DFT computation is started. The FLIP determines which side of the

memory is written to (read from).

6.3.11.9. Column Done Storing. If a timeout occurs, it will be necessary to
indicate which of the column failed. This is done by loading the DONE signal from the
three WFT columns into the PSi registers at the same time the output scale factors are

loaded into the TSR. This way, the PSi¢ will contain information as to whether the

RESET PQ2

{>C oUT

PQ1

DX
FLIP DO_J

Figure 45 Toggle Flip-Flop Gate-Level Representation

93

e At e T e e e B A A, e Nt e e T A AT T T R AT AT AT T e e Y
BRI BRI IR S L RSP PP NPT N, RO AT AT A AT A S AT A AN S o T S SR SR T

e

‘.. 4.
A

2"
Te
MO

‘;:(.
S

SA T Y

)
A

e

Al SN S =Y
|"<fv‘f{(' K

-

LERLCCOTTIY S o
\'(l.'fa':\'.'&f eI

L A A A i)

Tofgfal ol qlafe)s

- - -
AT e X0

LY
»

.
.
.

3
P N]

Can AT

4

e
a4 o 0 A A 4

DA

PR AT
(I R R N

‘,.'.':'.‘nl.

AR L ahatal bad Tl tal Vad “al Sat Aab tad Sl tal ol SalNel Nall Rl ol e bl Rl Ret i Rk

5.3.11.5. Size. The DFT size bits are handled in an manner similar to the

N :, initial scale factor bits. When LOADSTUFF is high, the input at the two SIZE pads are
loaded into two register cells. The DFT size bits are driven to the state scale bus when

the state is being loaded into each WFT processor with the LdState signal. Each WFT

processor, 15, 16 and 17 each receive the same DFT size. The size determines how many

words the WFT processor will use in the DFT computation. The interface to the

P

state/scale bus is shown in Fig. 43. The reason for gating each of the size bits through
LdState even though this same signal drives the output of the storage cells is so that the
state/scale lines will not be shorted when loading scale information. The following

describes the meaning of the size bits for the WFT16:

PADS
SCQ SC1 SC2
LOADSTUFF
Initial g
Scale [
Storage
Ldlnit W/SCO
SZ1/8C1
SZ0/SC2
\—-Y—l
Col 1

Figure 13 Size luterface to State/Scale Bus

problem is still valid as well as which column did not finish. The WFT done’s are directly

loaded into the PS¢ registers with the LdScale signal from the XROM.

5.8.12. Microcode Development.

The microcods is developed along side the VLSI design. Design tradeoffs are made
between the microcode and the hardware. Routines in the microcode can be made simpler
by increasing the hardware complexity. Tradeoffs occur when the complexity of the

hardware increases more rapidly than the microcode simplification.

The first step in the microcode development defines the microinstruction fields. The

PFA microinstruction contains 10 fields as shown in Table 16.

Table 16: Microword Format

BR_SFL ALL LOAD_FD ABUS BEUS BUS SPEC_FUNCT WFTCP PFADONE NXT_ADCR

0-8 912 13 14-18 10-28 2428 2041 42 43 44-50

The BR_SEL (branch selection) determines the branching conditions and selections. The
ALU field determines the operation of the ALU. The LOAD_FD (load field) field deter-
mines whether the NXT_ADDR field is inserted into the datapath or not. The ABUS
and BBUS fields determine which register is driven onto the A bus and the B bus respec-
tively. The CBUS field determines which register is loaded from the Cbus. The
SPEC_FUNCT (special functions) field is a horizontally encoded field to control certain
operations on the chip. The WFTOP field is used to start the WFT processors. The
PFADONE fields is used to signal the Host that a DFT computation has been completed.
The WFTOP and PFADONE fields were not included as part of the SPEC_FUNCT field
to increase code readability and emphasize their importance. NXT_ADDR (next address)
1s the final field in the word. This field is used to both specify the branch location or a

literal to be placed on the C bus.

AN TR B Y
EAE AN 3

. - “u Ty Ty
n. "-r.'x{') LA "‘
"

T
Ql.!.'l“

l"’- ry

A

2l Al

y 'I\"‘\"‘.‘.S"'u‘ Y
! 5 SRR

-

L

et
" 4

Lo

Y 2 3 7 s @ -
Ay G A ARy v,
':'t‘.-’.’. SR

A

e

"f

P
-

n'.,‘l‘.l t
e

I

ma aaaa A

‘o A";"J NN
PV S

g

Yy g 1
e N NOE
Al nl AL

4

s sy -, e .
’ i .
14_"4 "":

ST EAND b
AN e
AN

AN

r ¥y ¥ B ¥ ™
Felll e

The BR_SEL field is connected to the control sequencer and broken down into three

=

subfields as shown in Table 17.

Table 17: BR_SEL Field

BR_SEL Field
CMS BR_ON

0]1]2]3L4 5 617[8

TATET RN Y LYY T
D OO AR,

.

The CMS (conditional mux selector) subfield, enumerated in earlier in Table 5, selects the
condition bit for a branch. The BR_ON field selects the condition bit when this field is a

1, and the complement when it is a 0. This way, the microcode can branch on the

s e .
508 0,

. ’ .
Pl ¥l «

presense or absence of the condition. The NAF (next address field) subfield selects the

.’

source for the next address. The NAF field is enumerated in Table 6.

L% "l
L

The ALU field consists of the four sighals a3-a0 that are connected to the ALU. The

AR

ALU field is enumerated in Table 18 and shown below.

Table 18: ALU Field

ALU Field
ad | a2 | al a0
9 10 | 11 12

,u

<.

-’

o

‘o

.

o

)

-.. K
-‘.

-
.
-

The LOAD_FD is bit 13 in the microinstruction. When this bit is a 1, the contents
of the NXT_ADDR field 1s driven onto the C bus. From the C bus. it can be loaded into

any register. Accordingly, when the bit is 0, the field does not affect the C bus.

The ABUS, BBUS, and CBUS select one of the 28 registers to be driven or loaded.

.{ et Tt

Five bits are needed to select the 28 registers. The format of these fields is shown in

P

Table 19.

rorr

PN
"Il&f‘_{ L]

e
L

.~ -"-.:‘ 1.;.'

L]
'Q

‘g
f'f.:{ - . -‘V‘ o .'--‘, AT -. ,.“-n_ -,-'.- '-F '.‘-"_i."\. ™) ‘-*‘?-. ..(A ')_‘f""f‘ A
. Bk At S B R Rin 2 A AN AN W 5 2 B d . .

Table 19: Bus Fields

BBUS
2

21

The select of a register is a combination of the 5 address bits. Each fields uses the same

decoding scheme enumerated in Table 20.

Table 20: Register Select Translation

Select Register Sefect Regster
egiste
alslalalo] ™™ alslalalo]™

00000 unused 10000 WD31

00001 EC1 10001 WD3.

EC2 WD33
EC3 TSR
EU1 PSR
EU?2 unused
EU3 PS1
PEL PS2
PE2 PS3
PE3 ELR
WD11 NCR
WD12 CCR
TEMP
TOUT

unused

unused

The SPEC_FUNCT (special functions) field is the seventh on the microinstruction

This field contains bits to control certain operations on the chip and in shown in

Table 21.

) . 8% LW UN ™ Aol el tal ') AN W Qg fae' Y8 otk ata o8 ¢, " oha 208 ata"afa"a0" AR a2 a0 208" 2hat la® 28aT 0a® 80t Bt 008 Ao Al 0t 008 008 By 8.0 At At 4.0 g4,

Y
r‘-
- Table 21: SPEC_FUNCT Field R
)
~ SPEC_FUNCT Field &L
Bit Control Signal .
29 | Flip 2
30 | Ldlnit i~
31 | LdScale A
32 | LdPSi &
33 | ShiftTSR >
34 | ShiftPSR -
35 | LdELR s
36 | HOSTCONTROL R
37 | LdR1 Do
38 | LdR2 -
39 | LdR3 -
40 | LdState v
41 | DriveScale Ry
b
The WFTOP field is bit 42. When this bit is high the WFT processors are allowed ::,
Ky
to compute. Bit 43 is the PFADONE field. This bit is raised when the PFA has com- x
- r\.
‘3 pleted a DFT computation. *
.. f—_;
Bits 44-59 specify the NXT_ADDR (next address) field. Sixteen bits are needed
because this field interfaces with the 16-bit C bus. Bits 51-59 are connected to the source
multiplexer in the control sequencer and represents the branch address. =
The microcode word format is summarized in Appendix G. The second step in :::
.\.
microcode development takes the algorithm flow charts developed in chapter 3 and N
translates them into microcode routines. The first task according to Fig. 3-3 is initializa- Ay,
tion. This is done by loading all the registers with Os as shown below: ’
4 J
RESET: LOAD REG REG TEMP #0000000000000000;
LOAD REG REG WD11 #0000000000000000; o
LOAD REG REG WDI12 #0000000000000000; .‘{ \
LOAD REG REG WDI13 #0000000000000000; ~4
LOAD REG REG WD21 #0000000000000000; :{_
LOAD REG REG WD22 #0000000000000000; hg
N LOAD REG REG WD23 #0000000000000000;)
N 97 o
o
9
2
DAY
T T o - ‘- o -. . : . “- SN T B \\ ._.- - _.\ DR _._-\..- ‘-\ g \~_..~ AT ATAL R WS RO CL T TR .::\

When consecutive microword fields use the same field from the translation file, the
defaults must be explicitly defined for the fields before the one being used. In this exam-
ple, the third register field was used but not the first two. Therefore, the defaults for the

first two must be set.

The next step is to wait for the Host to give the PFA the PFAOP signal. During
this time, the Host is allowed to examine and alter the register contents. The loop for

this is shown below.

WAITGO: JnOP HostCntl WAITGO;
HostCntl;

This loop illustrates several important points about the microcode and the PFA con-
troller. First, the use of label is shown. WAITGO is the name of the loop and the line
pumber is substituted for WAITGO in the microinstruction. Second, the use of default
values makes the microcode more readable. If default values were not permitted the same

two lines would be coded as shown below.

WAITGO JnOP ALU LOAD_FD REG REG REG HostCntl WFTOP PFADONE WAITGO;
BR_SEL ALU LOAD_FD REG REG REG HostCntl WFTOP PFADONE NXT_ADDR,

Third, the pipeline requires the instruction following a branch to cause no undesirable
side effects. Since the fetching of the XROM microinstruction is pipelined, there is a one
instruction delay before a branch occurs. In this instance, a nop is not needed because

HostCntl should be high until the branch occurs.

After PFAoperate is received the controller compares the CCR and the NCR. If
these are different, a new configuration was requested. The controller then moves the
contents of the NCR to the CCR and loads the configuration data via the state/scale bus

to the WFT processors. The controller then toggles the LEFT signal to the WFT proces-

R R R R R R AR R LR T, & L A -.' .'\' TN
. .6 9. s S 3 !

T

r .

AL

Rt " ol G Y 4

ay Ryt

P AR/

AR A e v

Ly
”-\',‘\'v

YL e 1
AL %

et T L e T e
T

) ‘.-""'n,-‘

S
0,

g

RS

YN Y Y Y

g tat At tak Sk tad tal et tal tatatal VAt tah et Sat Nog fal tat e el et tav.tefeatataty als atotategheiat et alataly” UWUN YUY UYURU t ¥ e fig g9 87 o BVe §°a R'e gt @ty ¢
'

sors, drives the scale factors from the TSR to the WFT processors via the state/scale

’ '- i
A .
N bus, and raises WFTOP. 2
T'
:'. The controller now waits for all four DONE signals from the input host and the :r_
~ -
N three WFT processors. The controller will only wait a predetermined time for the proces- -
> Ny
. sors to finish. This time is stored in the TOUT register. While the controller waits, it
: increments the TEMP register and compares it to the TOUT register. When the two .:;
o o
L register are equal, a time out has occurred. The host will detect this in the PSi registers -'_'
A because the done bit will not be set. The code implementing this is shown below. "4
'’ »
’. '-l
n WAITDONE: INC TEMP REG TEMP WFTop; .
5.' CMP TEMP TOUT WFTop; ';
» JZ WFTop SCALE; A
L WFTop; ,
- Jn4DN WFTop WAITDONE; I
- WFTop; -
‘.-4 When the controller exits the WAITDONE loop, it latches the scale factors from the o
| J
b s . €
Y processors into the TSR, drops the WFTOP signal, and checks for errors. The reasons for e
‘: many of the condition inputs will now be explained. J
« e
A M "]
: To save time in the error routine, the controller isolates the error(s) to a specific set
" "
- of inputs. A sample of the error routine below illustrates this. i
. 7
“ JnWD ErrPE; ;
Y OR TEMP PS3 PS3; “
5 WDREGS: JoECo1 INCOLZ, ~
:‘. nop; RS
1 WD_11: Jnll WD_12;
. nop; -
. INC WD11 REG WDI11; -
WD_12: Jn12 WD_13; X
5 nop; ::"
::. INC WD12 REG WD12; :
o WD_13: Jn13 INCOLZ2; ~
-:: nop; ':
> INC WD13 REG WD13; N\
v e
w ‘f\-'\ :_'.
v o 99
4 T
v X
” -
T ey S L

o

»

;{.‘g‘r..l: -t

(Y S, ., i i X4 *, [§ ¢] A » 0) 1, A D 0 y ry -
u:‘\
Ky
’
%
.q"
INCOL2: JnECo2 INCOLS3; et
EnPE: JuPE ECCU;
nop;
The controller first checks if the error occurred in the watchdog processors. If the error Py
)
was not in the watchdogs then it skips to the segment for Parity Error. Within the seg- <
ment for watchdog errors, the controller first narrows the error to a column and then to :'.:_'
»
a specific processor. This same approach is used for all the error signals. .'
.
)
The controller then determines if an active processor faulted by comparing the CCR ::
.
.
s
and the ELR. If an active was at fault. the pipeline must be reconfigured. The contrcller ;N
fn
looks at the watchdog error counts for the two current watchdogs and assigns the one '
with the lowest error count to be the next active. Once the controller has set up the new :'_
configuration in the NCR. it will be different than the CCR and RECONFIGURE wil] be '
)
called when the controller starts the next problem. The controller now sends the PFA- .
*
DONE signal to the host and waits for PFAOP :
"
'1"
5.3.13. PFA Controller Summary.]

This chapter has described the VLS| design for the memory and the VLSI design
and microcode development for the PFA controller The PFA controller consists of

several major functional units and interfaces. The high level interaction of these units

i4

can be better appreciated in Fig. 46. This figure shows the major parts of the controller

and their approximate location on the chip.

e,
,

100

R

A S S O R R T R rt, A S G £ (R T, A L D L A S M R o R S OO, A aarde

“d

L A

K 3 .7

e P

| AP

L

i

wWD11

WD12

WD13

WD21

wD22

wD23

WD31

WD32

WwWD33

PQ1

. GND
‘. PQ2
‘ EUl
EUZ

EU3

EC]

REMEnaninie Nr o P PP S Ard: oIttt L dr g i ars g Al L

EC3
PE1
PE2
PE3

Figure 46 PFA Controller Floorplan

L
o]
A
S S S D
D D DD S S ¢ ¢ c S
o o o o i i a a a TT
n nn n VS § § S§ S S S $ S z z 1! 1 1 UE
e e e e dS S S S S § S 8§ S e e e e e F S
1 2 3 4 dyo03111.12021223033321 001 2 F T
State/Scale Bus .
Init. Scale
A . H
L Register Array o
E|l U 28 registers by 16 bits s
r t
r
o] I
r Register Array Interface n
Voling t
B Circuitry €
u Control Bus
I
s f
a
XROM C
Control 221 words by 60 bits ¢
Sequencer]
Toggle
F/E
R P P W F v R R R P T T S S H
e F F F] d o o o R P P h h s
s A AT i d w oW w E Q Q i i 4
e o d o P 1 2 3 1 2 f f
t p o p t o1
n O 1
e U N
T

H1S
H14
H13
H12
H1l
H10
H9
H8
H7
Hé
GND
HS
H4
H3
H2
H1
HO
HsO0
Hs1
Hs2

Hs3

AT

RS

5y
i

N w4
AP SIS

Fd

Ry 5

o N
SN
' R oy

Y
L}

)
\
J
'y
-
.
..
\
L)
- L
»
-
»
'.'J\
- -~ e
SRS
-
-
-n - .
A

[N
.
(d

LA NEAPAE L SRR ol o Y

CHAPTER 6

Results s
:,.

o

N

o

e
8.1. Results L'_
This thesis efflort has produced a prototype memory chip, the layout for the full :'.-':

\.-
memory chip and the PFA contoller, and a generic microcode assembler. i
6.1.1. Memory Chips. A prototype memory chip was design and fabricated. -;

It was designed to test the address decoders, the memory cell, the sense amplifiers, and :_"}
"o

the bitline logic. The chip was fabricated in 28-pin package using 3 micron CMOS pro- l'.;-
cess through MOSIS (MOS Implementation Service). A photomicrograph of the fabri- ::'_-
-

cated chip is shown in Fig. 47. The chip contains 32 words with 10 bits each. One of the ’(‘:.
bits in each word was used for the dummy bitline and one other bit was unused. :;:f
A larger memory chip was also designed and submitted for fabrication. This chip ._‘_

.::,-

was designed to store 272 words by 24 bits. This is the size memory needed for the a pro- ¥
5

totvpe PFA pipeline using a WFT16 and a WFT17 processor. The larger chip also con- o
tains all the circuitry to support the error correction and detection. A cifplot of this chip ;
:..

is shown in Fig 48 The chip is 7900 microns by 9200 microns

-

"

N

6.1.2. PFA Chip. A fully functional PFA controller was designed and sub- :f:

o~
mitted for fabrication. The chip will be 7900 microns by 9200 micron and sits in an 84- s
'ﬁ

pin package. The chip contains over 23900 transistors. A cifplot of the chip is shown in :’.‘:}
o
. . RS

Fig. 49. Prior to submission, the chip was fully simulated using Esim and the design was :
Y

verified. i
N
102 73

:::

A -

-

o

R LA PO N ST SO PTG iy ‘.-..-_'.g A S A S N A A AP A SR A '{'-‘,'l‘ Sl S P '.f-‘.f;

AL L A W A A SRS L. Wl

Prototype Memory Photomicrograph

t~
-
(Y
[
=2
0
1<

LN AP B

!

; S
. A
A

g

se .
RN
(XA

ae 8 & 2

v

N e

v
»
x
I\
«
r
P
{
=

wvv-‘
' ST =

AN

Inputs

-"-f‘l?n‘\ Ty 8

.~

Encoding Circuitry

".l’ g

-

3

"\‘_

*

Input Multiplexer =

W

Bitline Logic

Bitline Logic

D e .t

Left RAM

w00 0o

mH('DQ..OOOU

U""(DQ..OO(DU

.
r_ ¢

oo X
‘1""'1 i

Sy
P

R

Right RAM

o rr

XA
5/\-.‘.‘.'-

V""(DCLOO(DU

s

73 BN B B R o WY Wiy 4

Sense Amplifiers

Sense Amplifiers

Output Multiplexer

Decoding Circuitry

I BRI J N o W o Wiy 5

Figure 48 Memory Floorplan

Outputs

o" "fc-ﬂ.-'(q:'.- -, S

J‘:f'{'-f'l‘,'-f'-",'-"'-("-f'-i“.'l‘_'l'(,'-’.'a"'-"'-"'.('I"I O O}

104

." .; O]
WA

v

N
et

v Ty

S AL A0 PO SO R A N o,

| Pl A

e b

SO WY ™

. O YOI TR TON "
& B0 (o0 8.6 g 0 B (N TW

8.1.3. Generic Microcode Assembler Tool. A CAD tool was developed that
takes a microcode word format and a mnemonic translation file and builds a customized
microcode assembler. The assembler uses the translation file to generate a listing file, a
reference file, and a file of the translated microcode. Optionally, the assembler will pro-
duce an output of the microcode suitable for input to the optimizing XROM compiler, a

file reverse compiled form the translated microcode, or a VHDL description of the

XROM.

GMAT was also used in two other thesis efforts and in a class taught af AFIT in
the Fall term. Capt. Dave Gallagher used GMAT for his microcode for application
specific processors [Gal87] and Capt. Larry Shand used GMAT on a microcode descrip-

tion on a Kalman filter chip to generate a VHDL description [Sha87].

Capt. Gallagh used a preliminary version of GMAT where much of the information
needed by GMAT was entered interactively. This process was tedious and very error
prone. After the initial assembler was created, GMAT was no longer used. Instead,

alterations to the assembler were manually inserted by the author.

Capt. Shand used the final version of GMAT for the Kalman filter application.
With this version, GMAT extracted all information from the translation file and no data

was entered interactively.

The students in the Introduction to Computer Architecture class used GMAT in the

completion of their group projects.

ahwhEs

[
IO

Poerd

)

<. '1"//"’

.
LN
2

P

<

F] ..: -
A

L

.
[

.t

——
Q

o -r h' ‘..-- .‘n\l& N -'l- I- .I l' o ~I .. n‘ -. -' Al l.l h- v] L Q-I...ﬂ--.‘ Il L 'l-bl
S L [] . .\..\..\ "' \M\. [N A -‘- o ..-.u-.;\-u”. s ».- ... s.-\s...‘\-. .l\-- .‘”- -‘- \-!.-P\”\“v\ a ~- .(m - .-.- \”-. .”-... \... .”-..-(..” -
o B DD e _
o A § . § : 3 ' & - N R o \
e , U A

JAN

) SRR - (SN

o KT i |

Figure 49 PFA Controller Cifplot
106

»
b
I i
] ").
<RSI FiS § 2ia
X
1 1 s
3
) e | |
G ; = ~_v
; -~ 4
L pawed .-
¢ ! [ai] w3 =
] -] =
Wi
| =
ot ot oo d F Ot Qb . < - — -~ — - -
SN 2022 Tams &1 e N MY SR TR A [P

o CHAPTER 7
“

Conclusions and Recommendations

7.1. Conclusions

This thesis has shown that an application specific processor can be designed within
four months. With the state of the CAD tool set at the current time, it should be possi-
ble to design, submit, and receive application specific processors within one thesis cycle.
Efforts due to this thesis and the thesis by Capt. David Gallagher have increased the
CAD tool set such that this can be done. It is now possible to have an ALU that will be
useful in almost any processor, a control section that is correctly designed, an optimized
XROM, and a microcode assembler. Each of these improvements has special importance

d:" and decreases the layout time. This thesis used the predesigned ALU, control sequencer,

and XROM. However, the design of the ALU was still being done and the control

v v ww

sequencer had never been completely debugged. The XROM functionality had already
been proven. By using pre-designed cells, the designer of the processor, can spend more
b time on other areas of design including testability, controlability, and observability. The
designer will also be able to spend more time simulating the circuits in both spice, for
timing analysis, and Esim, for functional analysis. All of this increases the probability

that the chip will function properly when fabricated.

The microcode assembler is a very useful tool in several areas. First, the microcode
can be written in a form that is easy to read and less prone to errors. Once this micro-
code has been written and debugged, it is no longer necessary for the writer to translate

the microcode into an integer format for the XROM optimizer. This greatly reduces the

107

PP P SR S e " m®p " M a” € 4T et Y, "R A e a" RN L R L P I UL I S
L:‘(ff:'r:'i@lm:mmm;;f NN A TN 0 T A PP P S P R P PRI P I PE P

v 7
[

- v re v !
"n':'.. Lﬂ"‘v.' l..l'. ..‘ ."\‘! L J
e Paus s

y’ﬁ = % e,
A

'4.

et AP
SN
AN

0

R BRI v
AP 2
. -‘ -. -' l. 3

v

‘@
»

el
'y

]
.

)

1/
» \"‘-"-

" e
h

o'y

P
) v

[A S

.
ey

~,

. : .:-

(I I A
P PR Y]
oy A

LR

v .
Pl

CSANN AW L
LA

Rd
]

’
»

el

. ,'," ‘.""'..;.‘
! R
N IO AL

u‘!,'.'

rmwmmmmﬂﬂﬂm“mww W W Y T N WO Y W,

time needed to generate an XROM and the opportunity for human error. Secondly, the .

W L{..f\(‘I

reference file containing the microword along with its translations is a useful debugging

tool. One can observe the intended instruction, the XROM outputs, and the connections

\.':'n

to the XROM. This lets the designer verify all connections to the XROM and the XROM

A P N N Pl

5 AN

itself. Thirdly, the VHDL output of the XROM will be useful when chip level verification

o)

can be done using VHDL. The VHDL environment at the current time does not support

NN

easy simulation of VLSI chips. However, when it does this tool will already support an

XROM! description.

L

s
- s .

XA

7.2. Recommendations

WFFIr YT vV EEE T VYWY W.NEERETY LY V.Y VT vV v v e
- s
. \ » 3
Pl

Several areas in the Prime Factor Algorithm and in the CAD arena still need to be ‘i\.'

addressed. In the PFA project, the fully functional memory chip and the PFA controller 5;_.:

must be tested. Additionally, the chips used for clocking need to be developed. These .E.".

‘,' chips need to be carefully designed to meet the requirements of the pipeline. The chips !_\-,
o

should be very powerful and able to drive the large currents needed by the WFTs and E

capacitances associated with it. The WFT15 and WFT17 need to be designed. Although S

they are just modifications of the WFT16, the time needed for layout and simulation will é’_"

o

take approximately one man year for both. The work involved in these design will be -"_'_',
I

intensive, but will not be suitable thesis material. The design and implementation of i
)

these chips could be done by a stafl engineer. Finally, the prototype PFA-WFT pipeline
will need to be implemented and tested. The prototype includes a WFT16 followed by a

WFTI15 in a two-stage pipeline. :

XA

In the CAD arena more areas still need to be developed for streamlined design of

application processors. The area most lacking in tools is simulation. Esim is the only tool

R 25 0 N T

really used to verify chip design. This will simulate at a switch level but higher level

108
e e e S e L R P RN O L N S P . A T A W e N \-.\~ LN N T \-'\- N I\-'\I.--'..1‘\."_.~‘_.-'.'v'_-v' -"\.".." -
P AR R S R AP G L G N S PP L PR, PN, 7 Lalud PN AT AT Sy AP A T Sy

T T TV oV Ty S ke B At et Ak S ta et Aa Vot ottt tat ot b o oh e i S — I . 7]
P
¥

3 simulation is needed. Two areas of research are currently being developed at AFIT. These :_'::"
R are the STOVE (sim to VHDL extraction) project and the ongoing VHDL theses. The : X
STOVE project is attempting to extract chip at a gate-level representation. Currently, it é*

extracts inverters, clocked inverters, and t-gates. The PFA controller was extracted at E:

this level and produced approximately 12000 lines of VHDL. '

The current state of the VHDL environment does not support chip level simulation.

} When it does, however, this will become an important step is VLSI design. Chips will be :N

P designed first at the VHDL level, the layout will be done, then the chip will be extracted ;‘-}-
-

| back to a VHDL description and then compared to the original VHDL description. The '::EE
el

tool to complete the design loop will be able to take the original VHDL description and :.\-':

T compile it into silicon. This decreases design time and eliminates human crror at the lay- ;.:

out design level. :
. e
d’. This thesis effort, along with the thesis effort of Capt. David Gallagher [Gal87], has .

{ - shown that it is possible to generate a complete application specific processor within one :E?
o

! thesis cycle. This could be very important to the Air Force and the DoD, as well as :E-

y

AFIT. The rapid development of VLSI chips will decrease the time need to insert VLSI .:'

o

technology into existing systems. All the design methodologies associated with applica- :‘_

tion specific processors can be applied to the design to VHSIC systems as well. The _

AFIT VLSI environment could be developed so that high quality, fast turnaround appli- .-

cation specific processors could be produced and tested within one year. To encourage

o)

this development several areas could be explored. First, AFIT could be designated as an '.'-',.'_',.-

Air Force "center of excellence.” This would establish AFIT as an identified program and !,-

allow more resources to be dedicated to VLSI design. Resources are the second area. A set :

NS

of hardware could be dedicated just for VLSI design. This should include at least one .:-

SR K
il .

109 :'.."

P Y
yAy

v
W Al

AL

;‘:

LA

"

"!l'{‘.
YRR

Sun Workstation and a superminicomputer such as an ELXSI 6400. Third, a civilian staff

2'e

of at least two people could be dedicated to the VLSI design teams. One person would be

Ol

responsible for maintaining the CAD tools, systems, and general configuration manage-

fEC
l.
< I‘;‘) /

A &

ment. The second person could be a design engineer acquainted with the CAD tools and

1

the cell libraries able to integrate the design into silicon rapidly. With these recommenda-

.

A
[N

tions, AFIT could be a leader in the field of VLSI/VHSIC insertion.

L@
LAy

R r’_ Ay
NN

LY 5@ o
,‘i)\,‘-,‘a" "y ‘. <
LS

B
bt &9

SNy
I AP

-
.
t

.,
’y

T I -.;. AR a
ORI LU

L RS 4
A .“.‘(;

*

110

~
.

“wy'®
s

0 - - - - - 0 . .
b S A A A P AR A A R Ty N A \ -

N

"
7

(Bec85)

{Bur83

i

Fit83;

[Fre86,

|Gal87,

[Gla85

iGooT1

‘Gre84'

[Hed86'

[Lin83]

[Lin84]

Bibliography

Beck, Leland L., System Software: An Introduction to Systems Programming,
Addison-Wesley, Reading, MA (1985).

Burrus, Charles S., “Comments on ’Selection Criteria for Efficient Implementa-
tion of FFT Algorithms’” IEEE Transactions on Acoustics, Speech, and Signal
Processing 1(31) pp. 206-207 (February 1983).

Collins, James M., “Simulation and Modeling of a VLSI Winograd Fourier
Transform Processor,” MS Thesis, GE/ENG/85D-9, School of Engineering, Air
Force Institute of Technology (AU) Wright-Patterson AFB, OH, (December
1985).

Cooley, J and J. Tukey, “An Algorithm for the Machine Computation of Com-
plex Fourier Series,” Mathematics of Computation, (19) pp. 297-301 (1965).

Coutee, Paul W. “Arithmetic Circuitry for High Speed VLSI Winograd
Fourier Transform Processors,” MS Thesis, GE/ENG/85D-11, School of
Engineering, Air Force Institute of Technology (AU) Wright-Patterson AFB,
OH, (December 1985).

Fitzpatrick, Dan, ‘“Mextra: A Swith Level Simulator ,” in 1989 Berkeley CAD
Tools User’s Manual, , Berkeley (1983).

French, L. E.,, “A RISC Controller for the CAM-PUTER System,” M.S.
Thesis, AFIT/GE/ENG/86D-58, School of Engineering, Air Force Institute of
Technology (AU), (December 1986).

Gallagher, David M., “Rapid of Prototyping of Application Specific Proces-
sors,”” MS Thesis, AFIT/GE/ENG/817D, Sct ool of Engineering. Air Force Insti-
tute of Technology (AU), (to be published December 1987).

Glasser, L. A. and D. W. Dobberpuhl, The Design and Analysis of VLSI Cir-
cuits, Addison-Wesley Publishing Company, Reading (1985).

Good, 1. J., “The Relationship between Two Fast Fourier Transforms.” I[EEE
Transactions on Acoustics, Speech, and Signal Processing C-20 pp. 310-317
(March 1971).

Grebene, Alan B., Bipolar and MOS Analog Integrated Circust Design, John
Wiley and Sons, New York (1984).

Hedrick, Gary D., “Design of Fault Tolerant Prime Factor Algorithm Array
Elements,”” M.S. Thesis, AFIT/GE/ENG/86D-45 School of Engineering. Air
Force Institute of Technology (AU), (December 1986).

Lin, S. and D. Costello, Error Control Codes: Fundamentals and Applications,
Prentice Hall, Englewood Cliffs (1983).

Linderman, Richard W., “High Performance VLSI Technologies. Integrated
Circuits, and Architectures for Digital Signal Processing.”” PhD Thesis. Cornell
University Ithaca, NY, (August 1984).

Bib-1

LS

- S LN

L |

)
EE [Man82] Mano, M. Morris, Computer System Architecture, Prentice-Hall, Englewood o
S Cliffs, N.J. (1982). o
[Muk86] Mukherjee, Amar, Introduction to nMOS and CMOS VLSI Systems Design,
X Prentice-Hall, Englewood Cliffs, N.J. (1986). N
o [Ost86] Osterhout, John K., “Magic: a VLSI Layout Editor,”” in 1986 Berkeley CAD ;._
O Tools User’s Manual, , Berkeley (1986). N
o [Pet72] Peterson, William W. and E. J. Weldon, Jr., Error-Correcting Codes, MIT >}
' Press, Cambridge, MA (1972). .
& [Rid79] Rideout, Leo V., “One-Device Cells for Dynamic Random Access Memories: A P
2 Tutorial,” Transactions on Electron Devices 26(6) pp. 839-852 (June 1979). ;:
; [Ros85] Rossbach, Paul C., “Control Circuitry for High Speed VLSI Winograd Fourier :"
Transform Processors,” MS Thesis, GE/ENG/85D-85, School of Engineering, .
Air Force Institute of Technology (AU) Wright-Patterson AFB, OH, (December '
1985). o
[Sha87] Shand, Larry J., “The VHDL Simulation of a Space Surveillance Signal Proces- K
y sor,” MS Thesss, AFIT/GCE/ENG/87D, School of Engineering, Air Force -
. Institute of Technology (AU), (to be published December 1987). ;
[Sha49] Shannon, Claude E. and Warren Weaver, The Mathematical Theory of Com-
7, munication, University of Illinois Press, Urbana (1949). :::
7 [She86] Shephard, Carl G., “Integration and Design for Testability of a High Speed :5‘
v Winograd Fourier Transform Processor,” M.S. Thests, AFIT/GE/ENG/86D- N
N) 46, School of Engineering, Air Force Institute of Technology (AU), (December >
. ‘; 1986). -
S [Shi&5] Shinn, Wook H., “Design and Implementation of High Performance Content- b
- Addressable Memories,” MS Thesis, GE/ENG/85D-89, School of Engineering, '
o Air Force Institute of Technology (AU) Wright-Patterson AFB, OH, (December
” 1985).
. |Tay85] Taylor, Kent, “Architecture and Numerical Accuracy of High-Speed DFT Pro- '
cessors,”” MS Thesis, AFIT/GE/ENG/85D-47, School of Engineering, Air Force
Institute of Technology (AU), Wright-Patterson AFB, OH, (December 1985). -
(Ter86] Terman, Chris, “Esim: An Event Driven Switch Level Simulator,” in 1986 .
Berkeley CAD Tools User’s Manual, , Berkeley (1986). N
(Wes85] Weste, N. H. E. and K. Eshraghian, Principles of CMOS VLSI Design, ¥
B Addison-Wesley Publishing Company, Reading (1985). ~
~ fa
- (Win78] Winograd, S., “On Computing the Discrete Fourier Transform,” Math Com-)
" put. 32 pp. 175-199 (Jan. 1978). -
5.' ?;-
~ <3
iy N
. N
. RS
- .\
- RS
T :
b Bib-2 -
=)
N <
: 5
- 5
e e Nl e e L e T AT A e Ty T AT T T A AT T A N T R T N T N N S N TN e ~

s §%2 40 0"

0 * At ba®ola” WYY v 0 g
B 4.0 .8 5.6 .0 BaW a0 .0 {0 §a" Ba L > \J A 9, r T)

VLol E o

Lieutenant Robert S. Hauser was born on 5 January 1964 in Wood River, lllinois.
He graduated from the University of Illinois in 1986, and was commissioned in the
United States Air Force as a Second Lieutenant. In January 1988, he will begin an

assignment at Arnold Engineering Development Center, Tennessee as a data acquisition
engineer.

.....
PR
NN AN

w1

ety Yy

&l .<

h Iy 3o
R I,J

..:- ,5

"~
+h

<

[

-
>~
-

t e
Y

2.
(3

’ ;' AR

&

)

Th)

-.:.: P

&

'

Ce Y N
(A
.

» '\.“vl "1.:\" g

Y e '(‘-.

¢l
]

¥ WY

S

\.-\\. \fF;J

[)

APPENDIX A

f--...,.

ny fp..r.-u-

0\\\\\\\&0.\. X E'Ed

Error Correcting Code Matricies

This appendix contains the matricies used for the Error Control Coding in the PFA

controller chip

Table A-1:

-

Parity Generator Matrix

R B R O o O S XA IR AR RS I
c]l]oc 0o 00O - ~00000~0~0 000 ~0 0 ~
Slo0o o000~ =00 00O =0 ~0000C ~00 —~0O
| O 00 O~ ~~0 0000 ~0 =000 0C =00 ~O0 0
e | OO0 0 -~ ~ 00000 ~0~0000~~00~00o0
Sloo~~0c0co0oo0c 0o ~0~000O0O~00C~00O0O0
SO = ~ 00 00O =0 =~000QQO0O0O0 ~00C 00 —~
e |~ =0 000000 ~0 00O ~0 ~000C 0 ~O0o
ce|~©c o0 co0c00 00000 ~0O0 ~00O0O0 ~0o0
I S I I O
<@,

L (L]
’ .s........ x..x..\ 7

,IJ‘-q-q--

PR R

A-1

>

e ..
-

-
)
"o e

LG S R

CNE I
.

LN N
-

.My r
Ot

/.'I.'

SR

vt Pl ¥

Corresponding parity generator matrix equations:

8]
=
¥

.
+
w
=
¥

2
)
+

-
>
¥

o~

B

Uy

upturstug+u+ugtusg

t'o

u4+u5+uu+u 13+U 18+u2,

s

V) = ug+u;+ugtu s+ujr+ug

Ugtug+ujotujstugtuos

t'g

Vo = ujtuotugtujg+u;gtuag

ugtus+ujztu;+ugg+uog

v

Uo+uz+ug+uy+ujgtujg

v3

SRR ARAN/

Syndrome Generator Matrix

Table A-2:

87

8¢

&g

84

a3

82

8

8o

A-2

To

L

L]

s
T4

g

Te

T

Ty

To

Tio

@Y

T2

71

T4

718

e

fir

T8

Tie

"o

T2

Tz

Tas

T24

T2

T2

rn

ros

T2

T

a1

.“ \I

A

o
A
)
5
e Corresponding syndrome generator equations: t:-::
.:‘;3' So = rotrgvris+rigtraatro+ry 84 = rqtritriotrigHrogtros+ros :‘\';:
8) =r+rgtro+riz+rog+ros+rap 8y = ro+rjotriz+rigtroy+rog+rog "
o
89 =rotrg+rigtrigtrigtrog+ra 8 = rg+ratrigtrop+trootror+rag }'
2
83 =ratryo+ry+ryrtrigtrogtry Sy = r74rgtris+roy+raog+rog+ra; sp3 N
Table A-3: Error Bit Generator Matrix '
8o Lot 82 83 84 LI LrY 87
eo 1 0o 0 o0 ©0 o0 O0 o0
ee O 1 0 o o 0o 0 o0 s
eq ¢ 0 1 0 0 0 0 0 N
es o 0 0 1 0o 0 0 o0
e 0 0 0 0 1 0 0 0 -
s |0 0 0 0o o0 1 0 o e
e |O 0o o0 0o 0o 0o 1 o0 :f.
e 6 0 o o o0 o0 0 1 N
. 1 1 6 0 0o o0 0 o0)
e J O 1 1 o0 0o 0o 0 o0
, e | O 0] 1 0 0 0 0 .
P en | O 0 0 1 1 0 0 o X
’ e |]O 0 0 o 1 1 0 o0 -
:- es |l o 0o o o o 1 1 o s
‘v,. e | O) 0 0 0 0 1 1 '
A es |1 0 0 0 0 0 0 1 -
b, £ 1 0 1 0 0 0 0 o ;:j
X e 0 1 0 1 0 0 0 0 ;
ew | 00 1 0 1 0o 0 o0 .
. e | O 0 0 1 0 1 0 o
e | 0O O 0 0 1 0 1 0 "l
. ex |0 0 0 o0 0 1 0 1 o
- e 1 0 0 0 0 0 1 0 o
. es O 1 0 o o0 0 o0 1
. e |1 0 0o 1 0o o0 o0 o 9
€s | O] 0 0 1 0 0 o)
e | 0 O 1 0 0 1 0 0 -
. exn { O 0 0 1 0 0 1 0 :;-'
. e | O 0 0 o0 1 0 0 R
) ew| 1 0 0O 0 O 1 0 0O o
e | O 1 6 o0 0 0 1 0 -
e | O 0 1 6 o0 o0 0 1
v
(s
. 5
. -
. f. v
. 7
TS o
: A-3 'f-
: -
i A
~s
: s
o o L e e A L e T S e s e s e RSN

*
]
Dt]
T Ve,

P
”

e
s N
.

»
v

~ -

-’{

N
‘

“»

I

g
r p

€o

€

€2

€3

€y

€5

€6

€7

€s

€9

€10

€1

€12

€13

€14

€15

80

S0

So

So

So

So

8o

8o

8¢

S0

S0

8o

So

8

8

'8

s

8

‘81

‘81

‘81

"84

‘81

—

1

—

—

‘87
‘84858
‘83
‘89

‘87
'$4°85°86

‘83
‘89

s
$4°85°S6
‘853
"S9

87
'E:iss'ss
§2°83

87
"85S
8384
‘S

‘87
'§4°85°86

‘83
‘89

‘87
"54°55°36
83
"80
2 N
'84°85°8¢
‘83
-89

87

-8
5478586
83
"$9

‘8¢ 87
‘5475558

‘83

‘89

‘85°8¢°87
‘8§9°83°84

‘85°8g°87
'§9°83°84

.g;
858
"S3°84°85

“$a

$)

So

. w LY . .nq
.
-
LI » P ata
P I

n’"f""' [4
™
g

A-4

€16

€17

€18

€19

€20

€2

€22

€24

€25

€26

€27

€28

€29

€30

€3]

_30

=30

_30

_so

=30

_so

__so

"81'89°83

81782783

§1°52°83

$1°82'83

'§1°82°83

'§1°892°83

815253

§1°82°83"

'§1°89°83

§1°82°83°

§1°82°83"

§1°80°83"

§1°82°83"

‘518983

"$1°89-83

"84

Sq

‘S4

"§q°

Sy

‘S4

‘S4

-.33.84.85
81°82

85

Ss

-85

S5

‘85

"S-

"85

S5

S5°

‘85"

‘8¢

“Sg

‘S

‘86

"Sg°

8¢

Sg°

“Sq

‘87

"§7

”
)

2

-

oA,

v

r
L
.y,

.
F 4 Y
o4

P
A

N

‘s .
AR

"--
YO
e

v

v
.
.

RpAE

(AR
" s
13

5 5

s

s

-

. '\t.-;\ APPENDIX B

. GMAT Shell Script

' /bin/sh

DATE: 1 DEC 1987
Version: 1.0

#
#
#
#
L
NAME: gmat

DESCRIPTION:

This shell script run the Generic Microcode Assembler Tool (GMAT).
It first calls preg to parse the translation file and write out

the tailored C code. If the call to preg was successful, gmat

copies assem.c irto the directory and compiles the assembler.

After compilation, gmat removes assem.c.

#

L

¥

AUTHOR: Robert S. Hauser

Qe HISTORY :

, #

v echo Running preg

. if /eng/87d/rhauser/bin/preg $1

o then

v echo Copying library source code into this directory

. cp /eng/87d/rhauser/bin/assem.c assem.c;

. echo Compiling your assembler

5 cc -0 -0 assem assem.c -1lm;

N echo Removing library source code

5 Im assem.c

) else

echo Error in running preg.

d echo

s fi

A Y »
~
o)

- \-A

n. -k‘o

-~ o

I
AL

.’-.'. .'.f ’. -’. ,... . -.-". .-"-_--_'.__ I S SR - - L) - - .- L e W et - 'Y . L PR R - - w -, ™
4 L el g _1-_#.,.,,(,“-,.-_.'-..-_a.. .r.r_ R AT AP AR LY AP SAP AT J_l‘\f_\‘dc_ LAt

‘" APPENDIX C

._.'
PREG C Code :i
9
\ \J
\ \l
-.
8
/****t***t*****************i***t*t*t****tt*******tt**************tt*
* '_
* DATE: 1 DEC 1987 -
* Version: 1.0 -
* ‘e
* TITLE: Pre Gmat routine 3
* FILENAME: PREG.C
* COORDINATOR: Capt R W Linderman .
* PROJECT: Generic Microcode Assembler Tool (GMAT) ~3
* OPERATING SYSTEM: UNIX 4.3BSD .
* LANGUAGE: C ~
* CONTENTS: A
* get_answer()
a * get _names() R
n * build _assem() N
. * get_micro_format() =
o * scan_t_file() =
~ * update_blengths() o~
L~y *
r o * AUTHOR: Robert S. Hauser ~
-7) * HISTORY: -
~.. *******************'k*******t***************************t**********/ ‘:
:Q #include <stdio.h>
o #define TRUE 1 .
- #define FALSE O -
struct WD_FIELD_ ENTRY{ j
. char name[1000]; :
" int 1literal; -
P int label; -
e int blength; -
* }i
. struct T_ENTRY{ s
! char name[1000]; -
. int blength; -
~ }; :.
. struct WD_FIELD ENTRY fields[1000]; :
"y struct T_ENTRY t_fields[1000];
% FILE *tranfile, *gmathead; R
- char word[1000],answer([2]; “
o int num_sub_ fields; R
- int num_wd_fields,num_t_fields; v
- int bits_in_word; ~
int ok;

N C-1 %
\: K
K~]
* V-
2 -
f""_.;-'._.,;.-‘;_;.;_;.;.:-\.__'\r._z._-'.\-:._-._-._-'._.;‘ T e e o Vi e T T T A O PR

¥ N
int 1i,k,3; -
. char wordend[1000]; A
“: char field name tmp[1000]; N
\ N char empty(]= " ": o
- 5.--:: char fill[1000}; -
¢ a2 int ch; L
'. main(argc,argv) int argc;char **argv; :
. o
7 if (argc '= 2) ;:
. { e . n
¢ printf("\nUsage: preg translation_file_name\n\n");)
: exit(l); ~
} :
t if ((tranfile = fopen(argv[l],"r")) == NULL) g
N
“ X
printf("\nFile %s could not be found.\n\n",argv{l]); >
. exit(l); -
- } r
. N
& get_micro_format();)
y printf("\n"); 5
. scan_t_file(); o
) update_blengths(); "
- build_assem(argv[l]); Y
3 }/*end main*/ N
- /***'k*************************'k************************************* ;.:
. * DATE: 1 DEC 1987 e
(Y * Version: 1.0 B
. v * PROCEDURE: get_ names() g
: * DESCRIPTION: <.
N * Reads translation file and pulls out the field name s
S * .
. * PASSED VARIABLES: :
: * RETURNS:
* t_field name : name of field &
" * t_field_blength : field length N
e * GLOBAL VARIABLES USED: Yy
r * EOF -
. * ch)
* tranfile ~
_ * num_sub_fields
- * GLOBAL VARIABLES CHANGED: N
1283 * ch !:.:
; * tranfile W
- * num_sub_fields -
- * FILES READ: '
* tranfile
- * FILES WRITTEN: o
’ * MODULES CALLED: ~
- * CALLING MODULES: N
- * scan_t_file() A
’ * 3
- \
. * AUTHOR: Robert S. Hauser
- * HISTORY:
*

»
\".'.ﬂ‘ 2222222222222 220 2022202222 RRRRRRRRE R 84

/
C-2

P N
DR T S Y

N .
\ -
~ A !
N i
-~ -

2% A% g Rt ¥y gt at A ato gt N o at Al "aty et o tal YAt o ptanal et Sal Sal -t b a Lo ol el t et tat oot Ak Sat et Naty aRy) ‘abh YW

"y
get_names(t_field name,t_field_blength)
char t_field name[];
p int =*t_field blength;
8 (-
5 char t_field value[100];
num_sub fields = 0;
for(;;)
{
k=13 =0;
ch = fgetc(tranfile);
while (ch == ' ') ch = fgetc(tranfile); /* ignore leading blanks */
if (ch == '\n'|| ch == EOF) break;
/* if at end of blank line or file quit*/
while (ch !'= '\n' && ch != ' ')/* until EOL or blank */
{
if (num_sub_fields == 0) t_field_name(k++] = ch;
ch = fgetc(tranfile);
if (num_sub fields == 0) t_field_name(k] = '\O';
num_sub_fields++;
while (ch == ' ') ch = fgetc(tranfile); /* skip blanks */
while (ch !'= '\n' && ch != ' ')
{
if (num_sub fields == 1) t_field value[j++] = ch;
ch = fgetc(tranfile);
if (num_sub_fields == 1) *t_field blength = j;
. /* ignore trailing blanks */
‘.“ while (ch == ' ') ch = fgetc(tranfile); /* ignore trailing blanks */
. }}
/****************************'k******************t****************t**
* DATE: 1 DEC 1987
* Version: 1.0
* PROCEDURE: build_assem()
* DESCRIPTION:
* Makes read_trans_table(), translate(), make_reffile()
*
* PASSED VARIABLES:
* filename : name of translation file
* RETURNS:
* GLOBAL VARIABLES USED:
* bits_in_word
* num_wd_fields
* GLOBAL VARIABLES CHANGED:
* FILES READ:
* FILES WRITTEN:
* assem.h
* assem.tailored
* MODULES CALLED:
* CALLING MODULES:
* main()
*
* AUTHOR: Robert S. Hauser
* HISTORY:
.';'..; **t****tt*ﬁtt***it*tﬁ***t********t"*tttt*ﬁittht*itt*’*t****tttﬁ*tﬁ/
A
c-3
?r'rgfgf"fg{uf%fu:ﬂ{ninfufxfgfuﬁg'u'u'u'u'n'x'u'njxju:u' Bt N L e N e g e S

<,

2

AN el

v
2y

AR

e

» \/ ',

i o » e -
. '.l L et .
P A R

4

?5*.&'-'15‘;\1

-

4, 3 O OO L%, %8 "at ¢aL Y, o Vot Vo ol Mol dal el g QY v'\'lt' Salovalatato al Vet al ol alaSal el tale Al oty Big 4ty gio alg sle Ab, 430 At

{0

4

build assem(filename) char filename[];
{
int i;
FILE *aheader,*atailored;
AN aheader = fopen("assem.h","w");
fprintf(aheader, "#define BitsInWord %d\n",bits_in_ word);
for(i=0;i<num_t_fields;i++)
fprintf(aheader, "struct SYMBOL_ENTRY $stbl[MaxSubFields];\n",
t_fields[i].name); - -

O,

ey

for(i=0;i<num t_fields;i++) 2
fprintf(aheader,"int num_fields%s;\n",t_fields[i].name); -

. atailored = fopen("assem.tailored","w"); =

: /******************** make read_trans_tab]_e() LRSS S EEEE LSS Y

N fprintf(atailored,"/*********************************/\n"); .
fprintf(atailored, "read_trans_table()\n{\n"); e

. fprintf(atailored,"” char £i11[1000],£1111[1000];\n");

,j fprintf(atailored,"” symbolfile = fopen(\"%s\",\"r\");

. \n", filename);

fprintf(atailored," fscanf(symbolfile,\"$%[\\n]%%

[N\ \\n]J\",fill, filll);\n");
. for(i=0;i<num_t_ fields;i++)

fprintf(atailored," readin(%stbl, &num fields%s);\n"
(t_fields[i].name,t_fields[i] .name);
fprintf(atailored,” fclose(symbolfile) ;\n}
/* end read_trans_table */");

‘. JRERKEKIAX KKK XX KKK XXX x* Mmake translate() *rxxkxxxrkkkhkkkhkkkkk* /

T fprintf(atailored, "\ntranslate()\n{\n "y A
fprintf(atailored, "stripped = fopen(strip_ file,\"r\");\n");
fprintf(atailored, "transfile = fopen(trans_file,\"w\");\n");
fprintf(atailored, "fscanf(stripped,\"%%\s\",input).\n");
fprintf(atailored, "while(strcmp(END, input) !=0)\n{\n");

DMy

’ .|.'}.l]

for(i=0;i<num_wd_fields;i++)

{
if (fields[i]).literal == TRUE)
{
fprintf(atailored," if (literal(input)==TRUE) \n");
\ fprintf(atailored," fscanf(stripped,\"t%\s\"
»input);\n");
fprintf(atailored," else\n "y

}
- if (fields([i).label == TRUE)

{ =
fprintf(aheader,"int lab b length = 84;\n",fields[i].blength);
fprintf(atailored," if (symtrans(Labeltbl, -
= input,index_to_labels)==TRUE) \n"); “
- fprintf(atailored," fscanf(stripped,\"$8\s\",input);\n"); .
fprintf(atailored," else\n ")

. _‘i .'n _'v .

}
fprintf(atailored, "if(symtrans(%stbl,input,num_fields%s)==TRUE)
RN fscanf(stripped,\"%%\s\",input);,\n",fields[i].name, fields[i].name); e

3 #sp } /* end for num wd fields */

C-4

Saatataravadakela AN I G e N A I R A K T A R A SN Yy

Y
o
’ .
fprintf(atailored, "\nif(strcmp(NOP,input) == FALSE) . o
P fscanf(stripped,\“%%\s\",inpup);\n"); . . :::
fprintf(atailored,"\nif(input[O]--'+') fprintf(transfile,\" +\\n\");\n"); o
. fprintf(atailored,"\nelse\nprintf(\"\\nERROR: symbol . . -
e, >$8\s< not defined\\n\ ,input);\n"); i
p fprintf(atailored," fscanf(stripped,}?i%}s\",input);\n); >
fprintf(atailored, "\n}\nfclose(transfile); . s
printi(N \nfclose(stripped);\n}/* end translate*/\n"); :t
. ~
|$.;‘
| /************* make make_reffile() KkkkhkAKKKKK KKk R kKK KKK / :31
' fprintf(atailored,"\nmake_reffile()\n[\n");
fprintf(atailored," char "); 5v
for(i=0;i<num_wd_fields;i++) el

IR

{
if (i'=0) fprintf(atailored,",");

>

fprintf(atailored,"t%d[%d+l]",i,fields[i].blength); <

} a
fprintf(atailored,";\nlistingfile = fOpen(l_fi}e,\"f\"z;"z; N
fprintf(atailored, "\ntransfile = fopen(t;ans_fll?,\"r\ Yi")i)
fprintf(atailored,"\nreffile = fopengr_flle,\ w\"):")s i e L
fprintf(atailored,"\nfscanf(listingflle{\"%%\[\ ;\];}\n\ ,line) ;") ; 4:
fprintf(atailored,"\nwhile(strcmp(END,llne)!-O)\n[\n)i A

fprintf(atailored,"\n strcat(line,EOL2);")i

e J

g

fprintf(atailored,"\n fprintf(reffile,\"$8-50s\",1line);"); :2&
fprintf(atailored,"\n fscanf(transfile,\"$%\[\“+\]+\\n\",6linel);"); N
fprintf(atailored,"\n sscanf(linel,\""); NN
for(i=0;i<num_wd_fields;i++) ~l

{)

fprintf(atailored, "$%%ds" ,fields[i].blength); S

) o
fprintf(atailored,"\","); i?
for(i=0;i<num wd_fields;i++) e

-“‘"
if (i!=0) fprintf(atailored,","); ;
fprintf(atailored,"t%d ",i); NN

} o
fprintf(atailored,");"); o
fprintf(atailored,"\n fprintf(reffile,\"\\n"); T
for(i=0;i<num_wd_fields;i++) o

=N

fprintf(atailored, "$%s "); !w;

A
fprintf(atailored, "\\n\","); L
for(i=0;i<num_wd_fields;i++) RO
g

if (i'=0) fprintf(atailored,","); N

fprintf(atailored,"t%d",i);]

})
fprintf(atailored,");"); fQﬁ
fprintf(atailored, "\nfscanf(listingfile,\"$%\ o

[\ i\]/\\n\",1line);\n}\n"); o

forintf(atailored, "fprintf(reffile,\"end;\\n\");"); p
fprintf(atailored, "\nfclose(transfile);");)
fprintf(atailored, "\nfclose(reffile);"); P>
fprintf(atailored, "\nfclose(listingfile);"); .
fprintf(atailored, "\n)\/*** end make_reffile #****\ An");

C-5

»

- AR - ¥ el Aatate s atatale el " \ S, V A ol ”
‘--,'-
~.
~
>
 J
R

/X**rxxxx% make reverse_COmp() **¥xrwkswaxx/ ooy
v fprintf(atailored, "\nreverse_comp()\n{\n "y f:$:
,:_.: fpr}ntf(atai_lored,"revfile = fopen(r_file,\"w\");\n"); ':":
e fprintf(atailored, "transfile = fopen(trans_file,\"r\");\n"); oy
fpr@ntf(atailored, "for(i=0;i<line_num-1;i++)\n {\n"); ?:- .
fprlptf(atailored, "fprintf(revfile,\"%%0.6d \",1);"); "
for(i=0;i<num_wd_fields;i++) ' o
Ry
fprintf(atailored, "fscanf(transfile,\"%%%ds\",input); i:
) n",fields[i]. ;
if (fields[i].label == TRUE) A [1].blength); 2
fprintf(atailored,"if (revtrans($stbl,input,num_fieldsts) T
’ . ==FALSE) ;\n", fields[i].name, fields[i].name); ok
fprJ_.ntf(atallored,"(\nif (convert(input) !'= 0)\n"); e
fprintf(atailored, "fprintf(revfile,\" $%\d(%%\s)\" -l
,convert(input),input);\n}\n"); .
} e
else e
(- b
fprintf(atailored, "revtrans(%stbl,input,num_fieldst%s);\n" $:$
: ,fields[i].name,fields[i].name); o~
[]
} /* end for num_wd_fields */]
fprintf(atailored," fscanf(transfile,\"$%#\s\",input);\n"); f::::f
B
fprintf(atailored,"” fprintf(revfile,\"\\n\");"); N
- fprintf(atailored, "\n}\nfclose(transfile); ey
ﬁ \nfclose(revfile);\n}/* end reverse comp*/\n"); ';"
o
}/***x** end build assembly () ******/ 0
*******************************'k*‘k***'k***************************** ’:-I‘\
* DATE: 1 DEC 1987 oo
* Version: 1.0 XN
* PROCEDURE: get_micro_format() [)
* DESCRIPTION: "~.’
* Reads the first line of the translation file and el
* pulls out the word format SRR
. v e
* PASSED VARIABLES: ,\
* RETURNS: °
* GLOBAL VARIABLES USED:
* word e
* £fill R
* wordend e
* field_name_tmp oo
* fields farn)
* empty '!. <
* GLOBAL VARIABLES CHANGED: b
* word A
* fill oo
* wordend e
* field_name_tmp ™
o * fields ®
- * empty e

T v T v

~—v v

. ———— T

L
Te

* FILES READ:
* tranfile
* FILES WRITTEN:
* MODULES CALLED:
* CALLING MODULES:
* main()
*
* AUTHOR: Robert S. Hauser
* HISTORY:
tt****t****t********t'k***t***************t*************************/
get_micro_format()
{
fscanf(tranfile,"$[";];%(\ \nl]",word, fill);
printf("Microword format: $s ",word);
num_wd_fields=0;
do
{
strcpy(wordend, empty) ;
sscanf(word, "%s%[\]%[;]",field_name_tmp,fill,wordend);
strcpy(word,wordend) ;
if (index(field name_tmp, '#')) fields[num wd fields].literal=TRUE;
if (index(field_name_tmp,':')) fields[num wd_fields].label=TRUE;
sscanf(field name_ tmp,"%[#:]1",fields[num wd fields++].name);
}/* for num fields */
while (strcmp(empty,word)!=0);
}/**** end get_micro_format *xxxx*xx/

/***

* DATE: 1 DEC 1987
* Version: 1.0
* PROCEDURE: scan_t_file()

FILES WRITTEN:
MODULES CALLED:
get_names()
CALLING MODULES:
main()

* TION:

* PESCRIPTIO Reads the translation file and pulls out the
* field names and put them in t_fields
*

* PASSED VARIABLES:

* RETURNS:

* GLOBAL VARIABLES USED:

* t_fields

* GLOBAL VARIABLES CHANGED:

* t_fields

* FILES READ:

*

*

*

*

*

*

* AUTHOR: Robert S. Hauser
* :
Ez?f??f***************************'k'k**********’k****************/
scan_t_file()
{
num_t_fields=0;
do
{
get_names(t_fields[num_t_fields].name, '
- st_fields[num_t_fields].blength);
num_t_fields++;

}
while(ch !'= EOF);

} /****x* end scanf_t_file *****{;7

J'J,.-f‘.-lﬂr."f\(- '.'f"'f';f':f‘«.. R '. A ',ﬁ_: -{-‘, ._...J_ O ~ ...‘L.:.-. . '17."). '_. .‘(S, -.-‘..-f“_ - -f.-‘ RN -{.‘.* '_\-‘,_:',

LIl A
D% . AsLEL G
2 -y LT

.
a

N SN
L R v
e

«

\..‘-

2

o

L a"
.

,
Ny

s KPS

T
PACS
L)

n_v

'l
»

.

s
x

e o
SN

A

'
P

I.'.
s &

P DT

. L .
'l‘b'v"~‘l"“N

4¢¢J.{ﬁ“

vy
"l

Y s
TEL;

e 4

,'vl‘y IP

‘-‘-.

R S N
P
fﬁﬂ\}

N A4
" ¥ L
N Ayt

LA B

iaca AV’ Te ata A% bt BV, 2l tad' B OO OO VO

/*****i****************t*************************t*******t*********#

* DATE: 1 DEC 1987

A * Version: 1.0
e * PROCEDURE: update_blengths()

* DESCRIPTION:
Determines the number of bits in each field and
the total number of bits in the word.

PASSED VARIABLES:

RETURNS:

GLOBAL VARIABLES USED:
num_t fields
num_wd_fields
t_fields
bits_in_word

GLOBAL VARIABLES CHANGED:
t_fields
bits_in_word

* % % % % ok % % % Ok % * %

* FILES READ:

* FILES WRITTEN:
* MODULES CALLED:
* CALLING MODULES:
* main()
*
* AUTHOR: Robert S. Hauser
* HISTORY:
************'k**’k*******‘k*/
update_blengths()
.- {
Qe
bits in_word = 0;
for(i=0;i<num_t_fields;i++)
for(j=0;j<num_wd_fields;j++)
if (strcmp(t_fields[i].name,fields([]j].name)==0)
fields[j].blength = t_f
Zﬁ.
-
- T
o 5N
C-8 y%
~1
» .-'*1
\ N
o
A A B o P TP L T T N N L e N A

SASANAY AR SN R NS N PPV TSIV MNFY,

AN
s

int
int
int
int
int
int
int
int
int

AW R L T AR

o

2
v

(

APPENDIX D

Code Created by PREG

#define BitsInWord 60

struct SYMBOL_ENTRY BR_SELtbl [MaxSubFields];
struct SYMBOL_ENTRY ALUtbl [MaxSubFields};

struct SYMBOL_ENTRY LOAD_FDtbl [MaxSubFields];
struct SYMBOL_ENTRY REGtbl [MaxSubFields];

struct SYMBOL_ENTRY SPEC_FUNCTtbl [MaxSubFields];
struct SYMBOL_ ENTRY WFTOPtbl [MaxSubFields];
struct SYMBOL_ENTRY PFADONEtbl [MaxSubFields];
struct SYMBOL_ENTRY NXT ADDRtbl [MaxSubFields];

num_fieldsBR_SEL;
num_fieldsALU;
num_fieldsLOAD FD;
num_fieldsREG;
num_fieldsSPEC_FUNCT;
num_£fieldsWFTOP;
num_fieldsPFADONE;
num_fieldsNXT ADDR;
lab b length = 16;

read_trans_table()

char £111[100),£1111[100]);

symbolfile = fopen("t_file","r");
fscanf(symbolfile,"$[\n)%[\ \n)",£fill,£filll);
readin(BR_SELtbl, snum_fieldsBR_SEL);
readin(ALUtbl, snum_fieldsALU);
readin(LOAD_FDtbl, &num_fieldsLOAD_FD);
readin(REGtbl, snum_fieldsREG);
readin(SPEC_FUNCTtbl, énum_fieldsSPEC_FUNCT);
readin(WFTOPtbl, &num_fieldsWFTOP) ;
readin(PFADONEtb1, snum_fieldsPFADONE) ;
readin(NXT_ADDRtbl, snum_fieldsNXT ADDR);
fclose(symbolfile); -

}/* end read_trans_table */

..............................

L ovh oFA A3 o) oML NL S N

PR 3

.t et

. FOFE TIPS U SO TP S R L
‘. TR LS {'.A".‘A" a J-..A\.“‘-.‘—‘-“*‘ al

UV A WU WUV UV LUV W LT LT Y L L e -

: :

W N

L

. AL

3 "

: 3

% N translate() o

ORI (. wpn o
e stripped = fopen(strip_file,"r");

' transfile = fopen(trans_file,"w");

- fscanf(stripped,"%s",input);

o while(strcmp(END,input)!=0)

l’ { -

3 if(symtrans(BR_SELtbl, input,num_fieldsBR_SEL)==TRUE)

fscanf(stripped, "%s",input);
if(symtrans(ALUtbl, input,num_fieldsALU)==TRUE)
fscanf(stripped, "$s",input);
if(symtrans(LOAD_FDtbl,input,num_fieldsLOAD_FD)-sTRUE)
fscanf(stripped, "%s",input);
if(symtrans(REGtbl, input,num_fieldsREG)==TRUE)
fscanf(stripped, "%s",input);

if(symtrans(REGtbl,input,num_fieldsREG)==TRUE)
fscanf(stripped, "$s",input);
if(symtrans(REGtbl, input,num_fieldsREG)==TRUE)
fscanf(stripped, "¥s",input);
if(symtrans(SPEC_FUNCTtbl, input,num_fieldsSPEC_FUNCT)==TRUE)
fscanf(stripped, "%s",input);
if(symtrans(WFTOPtbl, input,num_fieldsWFTOP)==TRUE)
fscanf(stripped, "$s",input);
if(symtrans(PFADONEtb], input,num_fieldsPFADONE)==TRUE)
fscanf(stripped, "$s",input);
if (literal(input)==TRUE)
fscanf(stripped, "%s",input);
else
if (symtrans(Labeltbl,input,index_to_labels)==TRUE)
fscanf(stripped, "$s",input);

else
if(symtrans(NXT_ADDRtbl, input,num fieldsNXT ADDR)==TRUE)
fscanf(stripped, "%s",input);
if(strcmp(NOP,input) == FALSE) fscanf(stripped,"%s",input); Z:‘

if(input[0]=='+') fprintf(transfile," +\n"); =

else

printf ("\nERROR: symbol >%s< not defined\n",input);
fscanf(stripped, "$s",input); A
:23
fclose(transfile); iﬁ
fclose(stripped) ; Ny
}1/* end translate*/ W
make_reffile() A
{ N
char t0[9+1],t1(4+1],t2[1+1],t3[5+1],t4[5+1],t5[5+1], “
t6[13+1]),t7[1+1],t8[1+1],t9[16+1]; N
listingfile = fopen(l_file,"r"); RN

transfile = fopen(trans file,"r");
reffile = fopen(r_file, "w");
fscanf(listingfile,"$[;];\n",line);

D-2

[NEN RN AR R a8 Nag, ek Y, R b tatotat tal tal et tal tatatat Yal Sad et Sab tat el st alaaf 'l av ‘el atotaly ateala aly’

" PSS

s

Ay

while(strcmp(END,line)!=0)
{

v strcat(line,EOL2);
fprintf(reffile,"$-50s",1line);
fscanf(transfile,"%[+]+\n",linel);

55caqf(line1,"%9s%4s%ls%55%55%55%135%15%15%165",tO tl,t2,t3,
t4,t5,t6, t7 t8,t9);
fprintf(reffile,"\n%s %s %s %s ¥s %s ¥s s ¥s s \n“,tO tl

..(.(..

Pyts
»_8

s ¥ =
i)

WA

t2,£3,t4,85,t6,t7,t8,t9);

fscanf(listingfile,"$[;);\n",line);
}
fprintf(reffile, "end;\n");
fclose(transfile);
fclose(reffile);
fclose(listingfile);

}/*** end make reffile xxxx/

reverse_comp()

{

revfile = fopen(r_file,"w");
transfile = fopen(trans_file, "r");
for(i=0;i<line_num-1;i++)

{

fprintf(revfile,"%0.6d ",1);fscanf(transfile,"%9s",input);

revtrans(BR_SELtbl,input,num_fieldsBR_SEL);
fscanf(transfile,"%4s",input);
‘“ revtrans(ALUtbl, input,num_fieldsALU);

L4 fscanf(transfile, “%1s",input);
revtrans(LOAD_FDtbl,input,num_fieldsLOAD FD);
fscanf(transfile,"%5s",input);
revtrans(REGtbl, input,num_fieldsREG);
fscanf(transfile,"%5s",input);
revtrans(REGtbl, input,num_fieldsREG);
fscanf(transfile,"%5s",input);
revtrans(REGtbl, input,num_fieldsREG);
fscanf(transfile,"%13s" ,input);

revtrans(SPEC_FUNCTtbl, input,num_fieldsSPEC_FUNCT) ;

fscanf(transfile,"%1s",input);
revtrans(WFTOPtbl, input,num_fieldsWFTOP);
fscanf(transfile,"$1s",input);

revtrans (PFADONEtbl,input,num_fieldsPFADONE) ;
fscanf(transfile, "%16s",input);

if (revtrans(NXT_ADDRtbl, input,num_fieldsNXT_ADDR)==FALSE);

{
if (convert(input) != 0)
fprintf(revfile," %d(%¥s)",convert(input), input);

fscanf(transfile,"%s",input);
fprintf(revfile,"\n");

fclose(transfile);
fclose(revfile);
}/* end reverse comp*/

D-3

. W
T
BT

L A
A L

e

rr

e
« s 7

L g . o 2Rl A 4, S e e e A6 P -
) abalt g Aa¥ 8 alt Al gl g P POC T N ow e v Andful At N Pl

e APPENDIX E

Assembler Skeleton

/t*t'kt*‘k*****t*t*****ﬂ*t**t********t*t*i*****ttﬁtttttt**'kitt*tt****

*
G * DATE: 1 DEC 1987
g * Version: 1.0
~ *
4
v * TITLE: Assembler Skeleton
* FILENAME: ASSEM.C
* COORDINATOR: Capt R W Linderman
: * PROJECT: Generic Microcode Assembler Tool (GMAT)
* OPERATING SYSTEM: UNIX 4.3BSD
* LANGUAGE: C
* CONTENTS:
* readin()
) * symtrans()
. * literal()
* itobs()
* convert()
* revtrans()
[i * vhdl out()
‘. * strip()
y - * make_xromaddrs()
*
. * AUTHOR: Robert $. Hauser
. * HISTORY:

****‘k**i****************‘k******************************‘k***********/
#include <stdio.h>
#include <math.h>

y #define EOL g
y #define EOL2 "
‘ #define MaxFieldName 100
- #define MaxFileName 100
: #define MaxValuelength 100
#define MaxSubFields 100
X #define MaxSubFieldLength 100
: #define MaxLinelength 100
: #define MaxLabelLength 100
: #define MaxLabels 100
a #define TRUE 1
$define FALSE 0

i 20
et

struct SYMBOL_ENTRY (

N char SubField[MaxSubFieldlLength];
N char Value[MaxValueLength];
5 }i
N
- ’ E-1
N
\
&
2 e
T N N, A SR S I S Y A S

l-['.
AR

S oS

S ST R

P

RN
ST

: felre
.'.s’\’ss\-.%

e T
A

Vet ‘o
Tt SN

.
'l
4 U

BRI
R
S

X ’ ..':. \ S

o %t B

8t
¢/

RO

sV e S

(4

22 rl

LS

B

o
AEROH
ek

FILE
FILE

char
char
char
char
char

*revfile, *symbolfile, *stripped, *transfile;
xreffile, *xromaddrs,*infile, *listingfile;

strip_file[MaxFileName],i_file[MaxFileName];
l_file[MaxFileName],r_file[MaxFileName];

trans_file[MaxFileName],a_file[MaxFileName],v_file[MaxFileName];

line[MaxLineLength],line_no_lab[MaxLineLength];
linel {MaxLineLength];

char temp[MaxLineLength],label[MaxLabelLength];
char LABELarray[MaxLabels] [MaxLabellength];

char

input [MaxSubFieldLength];

char line_numl[MaxValueLength];
char slice[MaxValuelength];
char tchar;

char

char

char

char

char

char

char

char

. char
char

‘-. char
char

int
int
int
int
int
int
int
int
int

stru
#inc

main

remove[50] ;

END[]~="end";
END2[]="end;";
LST[]=".1st";
MC[J‘".mC";
REF[])=".ref";
STRIP[]=".strip";
TRANS[]=".trans";
VHDL([]=".vhd";
ADDR[]=".addr";
NOP []="nopu ;
COL[])=':";

LABELaddr [MaxLabels] ;

i,j,k,index_to_labels;

line_num,label num;

xrom_length;

num,base,indexa;

ch;

b_length;
gfnerate_xromaddrs,reverse_compile,generate_vhdl;
Clean;

ct SYMBOL_ENTRY Labeltbl [MaxSubFields];
lude "assem.h"

(argc,argv) int argc;

char **argv;

{

line_num =0;

label num = O;
index_to_labels = 1;
generate_xromaddrs = FALSE;
reverse_compile = FALSE;
generate_vhdl = FALSE;
clean = TRUE;

E-2

~ .l - . - c s
EAC > J J. ENE NN .J' -.. ,’v‘.\' v._' ‘_\. “4‘-"“-“""’" * w'.\..,.-‘,. r'. ? Y. -... s
, D

‘‘‘‘‘‘‘‘‘‘‘‘

DI
LA PR
ala' e o 0t

!

Faa

(Y '-',', . P

L

A

gt ot

((argc < 2)||(argc > 3))

printf("\n\nUsage: assem file name [xvrd]\n\n");
exit(l);

}

if (argc == 3) /* then options */

(

if (index(argv]| '!= NULL) generate_xromaddrs = TRUE;

if (index(argv(!= NULL) generate_vhdl= TRUE;

if (index(argv| != NULL) reverse_compile = TRUE;

if (index(argv| '= NULL) clean = FALSE;

}i

strcpy(i_file,argv(l1]);
strcpy(l_file,argv[l]);
strcat(l_file,LST);
strepy(r_file,argv(1]);
strcat(r_file,REF);
strcpy(strip_file,argv(1]);
strcat(strip_file,STRIP);
strcpy(trans_file,argv(l]);
strcat(trans_file, TRANS);

strepy(v_file,argv(l]);
strcat(v_file,VHDL);
strcpy(a_file,argv[l]);
strcat(a_file,ADDR);

strip();
read_trans_table();
translate();
make reffile();
if (generate_xromaddrs)
make_ xromaddrs();
if (reverse_compile)
reverse_comp();
if (generate_vhdl)
vhdl out();

if (clean)

strcpy(remove,"rm ");
strcat(remove,trans_file);
strcat(remove," ");
strcat(remove,strip file);
system(remove) ;

}/* end main program */

.'lfff.-.f P L
AR AR A A A A

S22 Lo 22

[l el i)

‘T

DO

o

a
»

P
“ "
AN

ie

Lot ag A hag-1.0°4 N V> ang ol tag ol s vl Fak Saf ¢ 2 -ad ab ¢ b eha fla R's 34 2bn At

..........

/******'k***

* DATE: 1 DEC 1987

* Version: 1.0

* PROCEDURE: readin()

* DESCRIPTION:

* This procedure reads in the translation file one char
* at a time to get the field name and the value.
* -

* PASSED VARIABLES: none
* RETURNS:

* t_field : pointer to structure for field
* num_sub_ fields : number of fields found
* GLOBAIL VARIBLES USED:
* symbolfile

* GLOBAL VARIBLES CHANGED:

* FILES READ:

* symbolfile : program name for the translation file
* FILES WRITTEN:

* MODULES CALLED:

* CALLING MODULES:

* read_trans_table

* AUTHOR: Robert S. Hauser

* HISTORY:

*

*********‘k**/

readin(t_field,num sub fields)
struct SYMBOL ENTRY t field[];
int *npum sub fields;
{
i=0;
for(ii)
{
k=3 =20;

ch = fgetc(symbolfile);
while (ch == ' ') ch = fgetc(symbolfile); /* ignore leading blanks */
if (ch == '\n'|| ch == EOF)

{

*num_sub_fields = i;
break; /* if at end of blank line or file quit*/

}
while (ch != '\n' && ch != ' ')/* until EOL or blank */

{

t_field[i].SubField[k++] = ch;
ch = fgetc(symbolfile);

}

t _field(i].SubField(k] = '\O0';
while (ch == ' ') ch = fgetc(symbolfile); /* skip blanks */
while (ch '= '\n' && ch != ' ')

(

t_field[i].Value[j++] = ch;
ch = fgetc(symbolfile);

}

t_field(i++].Value[j] = '\0';
Yhile (ch == ' 'y ch = fgetc(symbolfile); /* ignore trailing blanks */

}/* end readin */

E-4

rom e

PATAaA A

e N T

.
-

ks
l
{S:.::\ /**********t*tt***tﬁtttttttii*tttt*tttttntttttﬁnnttttttttttttﬁttt**
(RN * DATE: 1 DEC 1987
* Version: 1.0
b * PROCEDURE: symtrans()
[\ * DESCRIPTION:
N * This procedure searches a table for a sysbol. If the symbol
" * is found then the translation is written out, if not the
! * default is written out.
*
2 * PASSED VARIABLES:
N * tablename : pointer to table
., * symbol : symbol to look for
L * lentbl : length of the table
2 * RETURNS:
) * GLOBAL VARIBLES USED:
~ * transfile
. * GLOBAL VARIBLES CHANGED:
* FILES READ:
" * FILES WRITTEN:
- * transfile
N * MODULES CALLED:
. * CALLING MODULES:
O * translate()
> *
- * AUTHOR: Robert S. Hauser
N * HISTORY:
-." 3. (AR R ES SR SRR S RARRRRRRRE SRR Rt RS RERRSRRRE il i s R R XS R AR SRR RS
_ fq int symtrans(tablename,symbol,lentbl) struct SYMBOL_ ENTRY tablename]];
o char symbol|[];
> int lentbl;
o~ {
™ int sindex, found;
~ found = FALSE;
~ for(sindex=0; (sindex<{=lentbl)&&(found==FALSE) ;)
' {
i if (strcmp(tablename[sindex++].SubField, symbol)==0)
o,
}f found = TRUE;
- }
if (found==FALSE)
P {
; fprintf(transfile,"%s",tablename[0].Value);
te return(FALSE) ;
o }
"y else
' ['
. fprintf(transfile,"%s",tablename[sindex-1].Value);
t- return(TRUE) ;
" }
- }/* end symtrans */
: ----- B R R R X R R
:. ’-‘:’.
° A
?.:: s Es
¥
"~ "’.
i
J--
'\' et e T T NN N T T T e T AT e TN e e . . NSRRI

Ll N

L
»)u"'
N A
h) Fyl
*
§ *
D)
v *
: *
o *
*
]
- *
' *
LY *
~ *
. *
~ *
. *
*
; *
. *
g *
*
*
*
-
) *
.

{

&
L', .
s *
*
h' *
b *
b
*
o
$ *
N *
*
g
/
J
o
Ld
<
L
v
S
B¢
R -
.
>,

Y

AT R TR LIS

[WL S AT G i S A

/***t*i****t*******************t*i*****t******t*tttttw*xxu AAannmo

DATE: 1 DEC 1987

Version: 1.0

PROCEDURE: literal()

DESCRIPTION:
This procedure determines if the symbol is a literal. If so
it prints out the value. If not it return FALSE.

PASSED VARIABLES: symbol
RETURNS:
TRUE : if symbol was a literal

FALSE : if symbol was not a literal
GLOBAL VARIBLES USED:

GLOBAL VARIBLES CHANGED:

FILES READ:

FILES WRITTEN:

MODULES CALLED:

CALLING MODULES:
translate()

AUTHOR: Robert S. Hauser
HISTORY:

*'k****'k***‘k********/

int literal(symbol) char symbol[];

int lindex;

%f (symbol[Q] == '§')

for(lindex=1;lindex<(strlen(symbol));lindex++)
fprintf(transfile,"%c",symbol[lindex]);
return(TRUE) ;
}

else
return(FALSE) ;

}/* end literal */

/***********‘k********************t**************t******************

DATE: 1 DEC 1987
Version: 1.0
PROCEDURE: itobs()
DESCRIPTION:

This procedure converts an integer to a binary string.

PASSED VARIABLES:
number : integer value
lab b length : label field length

E-8

NS R R N Ny
AT A A e Tt ieaitasaaaiatat A A A

CI T W r e " a"a" I TR SR TRV T Vi
e e N T T L o

Py ¢

Uy
S

Ll

s 0 » &
Y XN

'y

A
RLALS

s

<~ f-l-',‘-' o "' "'1 \.{A{ i N

v

P

PN

st
o St

r
LA

v

v e o
1'-.1‘

PR
LN

cer
Aty

R
M .A_i

»
ala

PRTRNES
Sty
o
.L"_AA

‘e s'B A Al 'Sale P e g Lk’ - . . o 100 Yag
.. e Yol W N W "“' » W L 8, ¢ TN] q) - ‘ '.l\ _’ . L) & ‘— \.4,- Yol \ } \}

-

U

v & g
-

- * RETURNS: 2
* b _string : binary string
- * GLOBAL VARIBLES USED: RS
- * GLOBAL VARIBLES CHANGED: o
- * FILES READ: .
T e * FILES WRITTEN: -
SRR * MODULES CALLED: o
) ” * CALLING MODULES: -
* strip() .
7, * -
L, iy
* * AUTHQR: Robert S. Hauser)
W * HISTORY: -
o4 ‘k**t*********/ :.:
" itobs(number,b_string,lab b length) int number; .
) char b_string[]; int lab_b length; .
: { kS
. int index8; o
- int index9; :
N b_string{lab_b length]='\0'; =
for(index9=0,index8=1lab_b_length-1;index8>=0;index8--, index9++)
{ .
n, -
- if ((int)(number/pow((double)2, (double)index8)) >=1) s
- { o~
. b_string[index9]='1"; s
o number = number - (int)pow((double)2, (double)index8); N
£ } .
: else .
- [R
g -3
" b_string[index9]='0"; =]
& } B
% }
e f-, }/* end itobs */ 5
®
: = /***k********************************‘k****************************** 3\
- * DATE: 1 DEC 1987 -
- * Version: 1.0 N
- * PROCEDURE: convert() "
: * DESCRIPTION: -
~ * This procedure return the integer value of the string input
*
% * PASSED VARIABLES:
-; * slice : binary string of 1/0
- * RETURNS:
e * num: the integer value
* GLOBAL VARIBLES USED:
< * GLOBAL VARIBLES CHANGED: "
3 * FILES READ: -3
- * FILES WRITTEN: o
o * MODULES CALLED: \-
L * CALLING MODULES: S
N * revtrans() ~
*
! * AUTHOR: Robert S. Hauser -
[* HISTORY: e
D, ***t***i*******************t*tttttt!t"t"'ittQtttttitﬂtttttttttt*i/ \.-:
N long convert(slice)char slicel]; o
{ %,
. long num; ..
7 int 1,3,
s t-7 s
- hRS

B IS D S PO ¥ NP S PO

! for(i=strlen(slice)-1,3=0;1i>=0;1i--,J++) A

2 if (slice[i]=='1")

. num = num + (int)pow((double)2, (double)j);
return(num) ;

}/* end convert */

v,

<.

Ay A

/**

* DATE: 1 DEC 1987
Version: 1.0
PROCEDURE: revtrans()
DESCRIPTION:
Thie) "ocedure takes a value and prints the field name

b

-
>

PASSED Vi *IABLES:
tablename : pointer to a table
symbol : value to translate
lentbl : table length

RETURNS:

GLOBAL VARIBLES USED:
revfile

GLOBAL VARIBLES CHANGED:

FILES READ:

revfile

FILES WRITTEN:

MODULES CALLED:

CALLING MODULES:
reverse_comp()

* ok % % O ok ok % b % % % % % % % % % X *

AUTHOR: Robert S. Hauser
* HISTORY:
*****'k*************************t******************!***************‘k/
int revtrans(tablename,symbol,lentbl) struct SYMBOL ENTRY tablename(];
char symbol[];
int lentbl;
{
int rindex, found;
found = FALSE;
for(rindex=0; (rindex<{=lentbl)& (found==FALSE) ;)
{
if (strcmp(tablename[rindex++].Value,symbol)==0)
found = TRUE;

if (rindex==1)

return(FALSE) ;]
else "~

{ -4
fprintf{revfile,"%s ",tablename[rindex-1].SubField); o

return(TRUE) ; e

}/*end revtrans */ -~

/'k**'k

* DATE: 1 DEC 1987

Version: 1.0

PROCEDURE: vhdl out()

DESCRIPTION:
This procedure reads the translated file and output a VHDL
description of the ROM.

* % * X% ¥

E-8

* % % % H % % A * % * ¥ * ¥ * W >

PASSED VARIABLES: none

RETURNS:

GLOBAL VARIBLES USED:
BitsInWord
v_file

GLOBAL VARIBLES CHANGED:
FILES READ:

trans_file :

FILES WRITTEN:
- vhdl_file :
MODULES CALLED:
CALLING MODULES:
main()

AUTHOR: Robert S. Hauser

HISTORY:

file of translated mcode

VHDL description

t*********t**********/

vhdl_out()

{

FILE *data,*vhdl_file;

int word num;

char xrom word[BitsInWord+1l];

char eol[2];

data = fopen(trans_file,"r");
vhdl_file = fopen(v_file,"w");

fprintf(vhdl_file, "package AN_XROM is\n");

fprintf(vhdl_file,"
fprintf(vhdl_file,"

fprintf(vhdl file,"
fprintf(vhdl_file,"
fprintf(vhdl _file,"
fprintf(vhdl_file,"

type WORD_8%d is array (%d downto 0)
of bit\;\n",BitsInWord,BitsInWord-1);
type ROM_ARRAY is array (0 to %d)
of WORD_%d\;\n",line num-1,BitsInWord);
function GETWORD (WORD_NUMBER : integer)\n");
return WORD_%d is\n",BitsInWord);
variable XROM : ROM_ARRAY \;\n");
variable RETURN_WORD : WORD_%d \;\n",

BitsInWord);
fprintf(vhdl file," begin\n");
word_num = 0;
while(fscanf(data,"%s %s",xrom_word,eocl) != EOF)
{
fprintf(vhdl_file," XROM(%d) := B\"$s\";\n",
word_num++, xrom_word) ;
}
fprintf(vhdl _file," RETURN_WORD := XROM(WORD_NUMBER),;\n");

fprintf(vhdl _file,"
fprintf(vhdl_file,"
fprintf(vhdl_file,"

} /*end vhdl_out*/

return (RETURN_WORD);\n");
end GETWORD;\n");
end AN_XROM\;\n");

/********************************’k*********‘k'k********************t******

*

» A %

DATE: 1 DEC 1987
Version: 1.0
PROCEDURE: strip()
DESCRIPTION:

This procedure reads the microcode and strips off the

.................
..........

E-9

Aadadiadiadiedie dt g\a gt diabe thaal il bt Sl

g Th)
a

WP, s
e
oY

v e v 7
N

O™ S
PN LIS PR CAPARAT
. & oo

A

BTN - R
./'1." .‘l-.'.-\ 1

-
W I

TNCSONARN

"-"’", .
(NI S e
AT

(-:" (I ‘l “o!

%
Pl e

s

B

i
K]

PP

[RERENENE S

SRR NN Y

\

NG

Lod
AN
Y

¥ % o % % % % % % % % % % % % % % 3 o o * % * * % % % ¥ * ¥ * * ¥

- *

delimiters and converts the labels into integer valued

binary strings.

It also makes a listing file and check

for the exsistence of the input file.

PASSED VARIABLES: none

RETURNS:

GLOBAL VARIBLES USED:

"

strip file
1 _file
i_file

line
line_num
line_no_1lab
line_numl
END2

EOL
Labeltbl

GLOBAL VARIBLES CHANGED:

FILES READ:

line

line num
line_no_lab
line_numl
Labeltbl

infile

FILES WRITTEN:

listingfile
stripped

MODULES CALLED:
CALLING MODULES:

main()

AUTHOR: Robert S. Hauser

HISTORY:

**/

strip()
{

A uN
.I 'l‘ .l‘

o

R ARV Rl Sy

stripped = fopen(strip file,"w");
if ((infile = fopen(i_file,"r")) == NULL)

{

}

printf("\nFile %s could not be found.\n\n",i file);
exit(l);

listingfile = fopen(l_file,"w");

fscanf(infile,"$("

i1",1ine);

strcat(line,EOL2);
while(strcmp(END2,1line)!=0){

LGS

if (index(line,':"')
{

sscanf(line,"$[":]: %[;]",label,line_no_lab);
strcpy(Labeltbl[index to _labels]. SubField,label);
itobs(line_num,line_numl, ,lab_b_length);
strcpy(Labeltbl[lndex to labels++] Value,line_numl);
LABELaddr[label num] = line _num;
strcpy(LABELarray[label_. num++],label);

}

'= NULL)

if (index(line,':') != NULL)
{
strcat(label,COL);
E-10
..-'_.r.'(\r~f~f f~f.“".f'.‘f"f-f \f.‘f.'f\f . f\f <, i'&-’ v, (W \\ '(s "n ‘.q """ AR AT I

ST

e

'\" P ._"-,' . .".-".

W

6 g .-’:—.'. RO

s

2

A Ay A

7

A AN A A

AR

>

.‘....,
b ‘-_s_,'. A

-'_ -, "

{l

fprintf(listingfile,"%0.64 %-15s%s;\n",line_num++,
label,line _no_lab);

fprintf(stripped,"%s %s\n",line_no_lab,EOQOL);

}

else

. {
e fprintf(listingfile,"%0.64
$s\n",line_num++,line);
sscanf(line,"$[";1",1line);
fprintf(stripped,"%s %s\n",line,EOL);

fscanf(infile,"$[\nl\n",line);
fscanf(infile,"%[;]\n",line);
strcat(line,EOL2);

}

fprintf(stripped, "¥s\n",END);

fprintf(listingfile,"$s\n",END2);

fclose(listingfile);
fclose(stripped);
}/*end strip */

¥

/**‘k********************:’r**

* DATE: 1 DEC 1987

Version: 1.0

PROCEDURE: makexromaddrs()

DESCRIPTION:
This procedure reads the translated file and build the
XROM compiler input file.

RN R S
. "‘:n",k‘_l.l.

A

P

i

Y

PASSED VARIABLES: none

RETURNS:

GLOBAL VARIBLES USED:
trans_file
BitsInWord

GLOBAL VARIBLES CHANGED:

FILES READ:

4
R as

e

trans_file
FILES WRITTEN:

xromaddrs
MODULES CALLED:

convert()
CALLING MODULES:

main()

* % % ok % ok ok ok ok % % % O % % ¥ ¥ ¥ ¥ * * %

AUTHOR: Robert S. Hauser
HISTORY:

‘k********************/
make_xromaddrs()

({

*

570,58

transfile = fopen(trans_file,"r");
xromaddrs = fopen(a_file,"w");

v
.

I-.’
-
)
™~
N
)
h)
49
-+
Y
b
)
™

xrom_length =(int)(BitsInWord/4);
while(fscanf(transfile,"$[+]+ \n",line) != EOF)

{
for(base=0;base<(4*xrom_length);base = base+xrom length)
A [
I

E-11

-.'-'IVIEII-I - w ----p~---',’ - '.“'J".‘
") O.I,I i * A N# I l 5 ‘- W f o J" J. ’J‘ " *\:’\ ~'.'(J‘ ' -’ - i

s & % R

1,
)
)
'é
]
.
N
oy
-
4 m
LY
o
A
L)
1SS
L [M.N

for(indexa=0;indexa<xrom length;indexa++)
{

slice([indexa]=line[base+indexal;

slice[indexa+base]='\0"';
num = convert(slice);
fprintf(xromaddrs, "$d\n",num) ;
}
}
fclose(xromaddrs) ;

fclose(transfile);
}/* end make xromaddrs */

#include "assem.tailored”

TS 0 1ot (200 ol tal ek s ‘afiadind abanad sy YTV TP fﬁ»WWHHV“HWWVWWHNWNTRWW“‘QQ

s

A T N LA SN 4
"‘..'-.%,,“‘ el

g L W
Brtes e

AT

PN

- L A A
L WP Ay

L]
»

»

RN
S
«

PV AP PP

A

e .
e e

-y e
oy
oy,
I’

o

\.\ x
R PN

2,

v
a,t

LA wm
» 4

O W S}
PR R

._,....
el e

-
1

A AR
'y % .

», '. r
AR,

-

\ ? _ u! %) " [N .y ¥ ¥ : 992" ." ‘a.'a 8" YR \ 0 - - oW o v, ' ..‘VX“‘;V.":'X‘W.‘C"WW". D \“v;“w‘_‘ﬁv\v,v,v“‘ﬂ,

A S

-

! >

)
<

" -

' e
R APPENDIX F -
o Y,

'
Microcode Translation File =
b - e
/ =
r.-
'\
BR_SEL ALU LOAD_FD REG REG REG SPEC_FUNCT WFTOP PFADONE NXT_ADDR # . :
. 3:
BR_SEL 000000000 -
RET 000000001 b
CALL 000000010 -
JMP 000000011 bt

) CALLCR 000010110 b

- CALLCE 000100110 o

" CALLnZ 001001110 N

v JGE 000111111 N

Y Iz 001001111 N

- iz 001000111 .

. JnOP 001011111 k

N JndDN 001101111 -

X JnWD 001111111

. JnECol 010001111 Rk

L JnECo2 010011111 N
r. JnECo3 010101111

> - Jnll 010111111

' Jn12 011001111
Ini3 011011111
In21 011101111

. Jn22 011111111 :
In23 100001111 -
Jn31 100011111 N

. In32 100101111 N

N In33 100111111 RO

. JnEU 101001111 RS

InEU1 101011111 .
JnEU2 101101111 BN

: InEU3 101111111 -

y JnEC 110001111 o

. InEC1 110011111 a

v JnEC2 110101111

JnEC3 110111111

Y JoPE 111001111

’ JnPE1 111011111

’ JnPE2 111101111

) JoPE3 111111111

‘.
o

S NGRS A AR TR N A AL R A R R U A M P S B S ARy SR ST R R

ot e L

s

)

-

AL

COMP
AND
XOR
OR
MoV
sCY
RCY
INC
DEC
ADDC
ADD
SUB
SUBB
CMP

LOAD_FD

LOAD

REG
ECCC1
ECCC2
ECCC3
ECcul
ECCLU2
ECCU3
PE1
PE2
PE3
WD11
WD12
WD13
WD21
WD22
wD23
WD31
WD32
WD33
TSR
PSR
HE2
PS1
pPS2
PS3
ELR
NCR
CCR
TEMP
TOUT

0001
0010
0011
0100
0101
0110
0111
1000

1010
1011
1101
1110
1111

00001
00010
00011
00100
00101
00110
00111
01000
01001
01010
01011
01100
01101
01110
o111t
10000
10001
10010
10011
10100
10101
10110
10111
11000
11001
11010
11011
11100
11101

R A AN

WA

L

.l".'-
»

» "(\. '-' ‘"

L3 .

v, 'ﬁ“’",”: ':‘. -

F AN
.

«

0
»

" u ‘.
RN Ay
S

Pl -'sf\q N

'-". LY
P

Fas hP e b v &

o

vy

MYRY S

LLFLP LY 35 0]

LS AL W

{ R R R |

LY S YL AR AN

I

.l

PP A

~

A S

SPEC_FUNCT
Flip
Loadlnit
FhpLoadinit
LoadScale
LoadP$S)
Shift TSR
LPSISTSR
ShiftPSR
LoadELR
HostCnt]
LDStateR1
LDStateR2
LDStateR3
LDState
DriveScale

WFTOP
WFTop

PFADONE
PFAdone

NXT_ADDR

\}

.

1000000000000
0100000000000
1100000000000

0001000000000
0000100000000
0001100000000
0000010000000
0000001000000
0000000100000
0000000010010
0000000001010
0000000000110
0000000000010
0000000000001

[n gl -

Aaly

PR ot i o
ALY

)

X

s

Y

S

A

YA VALY

et
AR

'l

3 p A
s

7
1)

e

R

‘I. " ..
d "

»
)

Ol

e

s, 4

o
o

S
S
I\

APPENDIX G

Microcode Word Format

BITS

0-8 BR_SEL(9) - Branch Select Field

0-4 CMS(5) - Conditional Mux Select
None

Reconfigure

Error

Negative

Zero

PFAoperate

4DONE

Watch Dog Error (WD_ERR)
Error in Col 1 (ErrColl)

9. Error in Col 2 (ErrCol2)

10° Error in Col 2 (ErrCol2}

11: Watch Dog Error 11 (WD11)
12: Watch Dog Error 12 (WD12)
13: Watch Dog Error 13 (WD13)
14: Watch Dog Error 21 (WD21)
15: Watch Dog Error 22 (WD22)
16: Watch Dog Error 23 (WD23)
17. Watch Dog Error 31 (WD31)
18: Watch Dog Error 32 (WD32)
19: Watch Dog Error 33 (WD33)
200 EU

21. ECCU1

22. ECCU2

23 ECCU3

24 EC

25 ECCC1

26 ECCC2

27 ECCC3

28 PE

29 PE1

30 PE2

31 PE3

W NP DA W = O

5 BR_ON(1) - Branch On
0 Positive Logic
1 Negative Logic

6-8 NAF(3) - Next Address Field
0 Continue

1 Return

2 Call

3 Unconditional Branch

4 Conditional Datapath Load

TSN

*".1.' 7

/

WS L

S T
A t'l
AN

""v ‘s

v
P

oy
274

- -4
5’1'.

Cew

T B
Pty

’ e

e’
y e
s -
s
PR]

"ﬁ""‘:'-"u"-
L
ree el

.2
“’~‘-"'l

v

i'.':.w-.

P
»

A Ny v nw
.
*y S

N ; B sl ek et Aty . Y oy
'Y Nag ey tae S0 Vg o Vay tog el kog sai Vel Tai Tag al Talval talotatetattat valy taty ‘aloal alatata® L 4 A Iy . 'y

" :-;
. :.r
. N
- -~
- . 5 Conditional Return $\'
P 6 Conditional Call N
AN 7 Conditional Branch e
< 912 ALU(4) - ALU Function Select ~
& - 0 nop .
d 1C=4A '::
2 C—AandB :\
- 3Ce—AxorB AN
4 C—AorB
s 5 C « A (mov) w3
. 6 Set Carry Flag -~
. 7 Reset Carry Flag -
n 8 Co— A+ 1 o
: 9 Ce—A-1 .—n"
. 10 C—A+B+cy 'y
11 C—A+B
- 12 not defined =~
: 13 C — A-B ~
. 14 C—A-B-br -
X 15A-B
(™", :'v
_ 13 LOAD_FIELD(1) - Load Next Address Field to C Bus ‘
2 0 No Load e
1 Load :,:
’ :r"'
‘ 14-18 ABUS_SEL(5) - A Bus Select pa
' 0 none
- 1-29 Registers 1-19 L
- f. 30-31 not defined .
- 19-23 BBUS_SEL(S) - B Bus Select -]
' 0 none -
- 1-29 Regsters 1-19 s
" 30-31 not defined -
. l\
X 24-28 CBUS_SEL(5) - C Bus Select "
. 0 none f_\..
- 1-29 Registers 1-19 e
9 30-31 not defined -
, ’
y 29-41 SPEC_FUNCT(13) - Special Functions :,
~ bit -
; O(MSB) Fiip Memories -
., 1 Load Imtial Scale Factors e
" 2 Load Scale Factors from WFTs i
S 3 Load Problem Status Registers e
4 Shift Temp Scale Register
1’ 5 Shift Permanent Scale Register ~
6 Load Error Location Register v
7 Host Control -
- 8 Load State into Row 1 "
y 9 Load State into Row 2 \:
! 10 Load State into Row 3 o
j 11 Load State RS
. 12 Drive Scale Factors Y
A L 42 WFTOP(1) - WFT Operate -
Al L
: - J.:, ,_.:
. T G-2 D
: R
‘\'
» ' 4
o N
A N
e o S D T B N OO I AN DTN 7 I NI SR O S

4,

W

-

et
20 - \\L..\....\..‘.. -

0. WFTop'
1: WFTop

Signal

-

43 PFADONE(1) - PFA Don-

0. PFAdone’

FARRRK

1. PFAdone

44-59 NXT_ADDRY(16) - Next Address Field & Literal for Datapath

......-.
[P

R Y

N
A ! V\..‘-.-nf.! -

v
......-L
Salale

E S

I v »
. --lwlnl a_d

NN

)-.--ntu

-~ o st v

PRl e AR A

.-\l

L © e al

ik

NANNNS

P

.».-.I

-\..

G-3

|t\....‘..

WOAY

N,

r ..-_\-'

SO

Rl

L4

.
ol N ¥

-

s
w W

N

*
.

UNCLASSIFIED
SECURITY CLASS/F CATION OF THIS SaGt

REPORT DOCUMENTATION PAGE oM N 09040188

ta. REPORT SECURITY CLASSIFICATION th RESTRICTIVE MIARKINGS
‘ assified
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUT:ON/AVAILABILITY OF REPORT
Approved for public release,
distribution unlimited.

- l. l- "
‘r’i 5 5"r

<

. ‘I.'

Ya

Ir;

\.’5 A3

R

2b. DECLASSIFICATION DOWNGRADING SCHEDULE

N '|. A

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5 VIONITORING ORGANIZATION REPORT NUMBER(S)

AFIT/GCE/ENG /87D-5
NAME OF PERFORMING ORGANIZATION 6t OFFICE SYMBOL | 7a. NAME OF VIONITCRING ORGANIZAT:ON
(If applicable)
School of Engineering AFIT/ENG
. ADDRESS \City, State, and ZIP Code) 7o ADORESS . \(ity, State. and ZIP Coae)
2ir Force Institute of Technology
Wright-Patterson, AFB, CH 45433-6583

LI
R

N

o NS g

v
ATARR
R R

. NAME OF FUNDING / SPONSORING 8b. OFFICE SYMBOL 9 PROCUREMENT NSTRUMENT 'DENTIFICATION NUMBER

RGANIZATON X If applicable)
%11‘ }zorce Office of (1f appli

Scientific Research) AF OSR/XP
. ADDRESS (City, State, and ZIP Code) *0. SOURCE COF FUNDING NUMBERS

Bolling, AFB, Washington D.C. 20332 2ROGRAM PROJECT TASK WORK JNIT
SLIMENT NO NO NO ACCESSION NO.

RPN K
P
hAPRTN

VRS

. v
o e
v ‘o '

v

P

. TITLE (Include Security Ciassification)

o
L5
.'l.'l »

[N
LR

See Box 19
. PERSONAL AUTHOR(S)
Robert S. Hauser, B.S. Computer Engineering, 2Lt, USAP
13a. TYPE OF REPORT tip TME COVERED 14 DATE OF IEPORT (Year, Month, Day) |i5. PAGE COUNT
M.S. Thesis “ROM 70 Tecember 1987 154
16. SUPPLEMENTARY NOTAT.ON

>
s

A,
I

gy

COSATH CODES 18 SUBJECT TERMS (Continue on reverse f necessary and identify by block number)
FELD GROUP SUB-GROUP A .
05 07 VILSI, Discrete Fourier Transform,

Winograd Fcurier Transform

19. ABSTRACT (Continue on reverse (f necessary and :dentify by block number)

Title: Design and Implementation of a VILSI Prime Factor 2lgorithm
Processor

Thesis Chairman: Richard W. Linderman, Captain, USAF
Assistant Professor of Electrical and Computer Engineering

A}";tcved for p)g‘,'i- rel v 1MW ATR 190-]4.

Tyvelesruent

AR " ‘.
l. .

:wd'T:ZO DISTRIBUTION AVALAB LITY OF ABSTRA(LT ot ABSTRACT SECLRITY CLASSIFCATON

< [@unciassissounumiTed O SAME as aeT ot LUSERS Unclassified
22a NAME OF RESPONSBLE NOWIDUAL 2In TELEP-ONE Unciude Area Coge) | 12¢ OFF CI S*MBCL
' g W rinderman . Coptain, [ISAT S13-255-3°76 DEITENG
DD Form 1473, JUN 86 Previous editicns are obsolete SECURITY CLASS:F-CATON OF “=iS PAGE
UNCLASSIFIED

[
T,

eI

Vil AL

YA

sl

UNCLASSIFIED

(block 18 continued)
Application Specific Processor, Fault Tolerance

(block 19 continued)

Abstract

High-speed digital signal processing has a wide range of applications including,
radar. sonar, image processing, and target acquisition. The calculation of the Discrete
Fourier Transform (DFT) used in these applications has long been a significant
bottleneck for high-speed processing. Previous AFIT students have adopted a Prime Fac-
tor Algorithm (PFA) method using Winograd Fourier Transform (WFT) processors.
Three WFT processors are pipelined into a system capable of computing a 4080-point
DFT on complex data approximately every 120 microseconds when operating with a 70

MHz clock. . .

This thesis effort addressed the design and implementation of PFA controller chip
and interconnecting memory modules betwees the WFT processors. The PFA controller
is an application specific processor to control the flow of information in the pipeline,
interface to the WFT processors, monitor pipeline status, and take corrective action in
the presence of faults. The interconnecting memory modules buffer the data coming cut
of a WFT processor and going into anotber allowing concurrent reading and writing. ..

The PFA controller chip was designed, simulated, and submitted for fabrication
through MOSIS. Twenty-eight 16-bit registers store the pipeline information. An
arithmetic/logic unit (ALU) computes data transformations. A read only memory stores
the microcode. A control sequencer sequences through ithe proper code segments. Finally,
special circuitry interprets the fault information and reconfigures the pipeline.

This thesis effort included writing a microcode assembler to to raise the user inter-
face to the AFIT-XROM silicon compiler. Raising the user's level of abstraction to
mnemonic microcode, while still providing an error {ree path to silicon layout, reduces
chances for error in the microcode specification. A generic microcode assembler tool was
created as an extension for use with other application specific processors. This tools gen-
erates a microcode assembler from a word format and a translation file. The assembler
will output a file compatible with the XROM compiler, a VHDL description of the
XROM, a listing file, a reference file. and a reverse assembly. This tool was tested on two
other AFIT theses and a computer architecture class.

A prototype memory chip was designed and fabricated in 3 micron CMOS through
MOSIS to test the 1-transistor memory cell, the wordline selectors. and the sense
amplifiers. Simulations predict an access time of 10ns. A larger memory was designed,
simulated. and submitted for fabrication through MOSIS. It contains storage for 272
words of 32 bits each. It is dual ported and permits concurrent reading and writing of 24
bit data. The memory also includes error control circuitry for single error correction and
double error detection.

R TR I R A R R et B AT NI G N A B I R L A s N A AT
N {*.r_..r L A ,\\f\. \J' T A e A e AT s T e e e T AT
! - > * " * » »

J

1\

L4

s

- f

'l

f'((';"

LR A
o A - - .

Pl ot

Q'

4

[P T Rl)
- r’.’.'-l ¢

s
s
e

YA

[

r

e G B
v

o
=

P

[y

el
TORE I Y

. o
Pl

[P

e
,'i '-

r~-

.A"- l.'l'l"'"l .'N
PRI AN A AR

n 4 _a L

g e s - -u- -- 1, PR
m“.....m SRR A

‘......fm OLI LR @
L F AP R AP SR T L P S RN

\atatal Sal S b et oattat "alo Vet ial gl atarny tate gty a0 aBy pta ety ol

TR

ket

NIRRT

-

FND
DATE
F//MED

ROV VAT MTUN

R Al

